The Cybernetix Case Study. Probabilities and Non-determinism.

Ivan S Zapreev

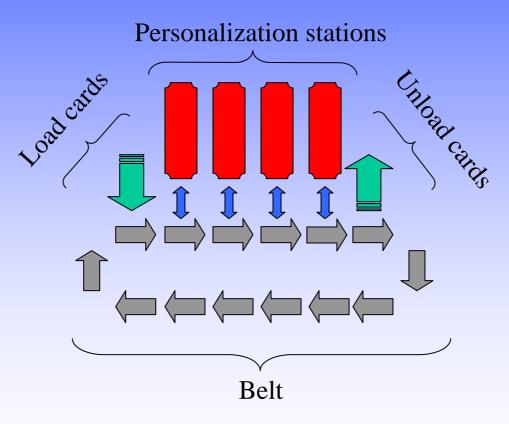
10/28/2004

Formal Methods and Tools Group, Twente, 2004 1

Outline

The Cybernatix Case Study
The main interest
Prism tool
Models
Conclusions

The Cybernatix Case Study



Main interests

Involve probabilistic and/or non-deterministic failures

- Types of failures
 - A card can be broken
 - A personalization station can be broken

P(M of N cards are broken) = ?

Prism tool

A probabilistic model checker • Supports the following probabilistic models: • **DTMC** – discrete time Markov chain MDP – Markov decision process CTMC – continuous-time Markov chain Supports the following temporal logics • PCTL (probabilistic computation tree logic) – for DTMCs and MDPs

CSL (continuous stochastic logic) – for CTMCs

PCTL and properties under consideration

The syntax of PCTL:

$$\phi ::= true | a | \phi \land \phi | \neg \phi | \mathsf{P}_{\triangleright \triangleleft p} [\varphi]$$
$$\varphi ::= \mathsf{X}\phi | \phi \bigcup^{\leq k} \phi | \phi \bigcup \phi$$

The verified property:

 $P_{=?}[true \cup M of N cards are broken] - for DTMCs$ $P_{min=?}[true \cup M of N cards are broken]$ $P_{max=?}[true \cup M of N cards are broken]$

The Prism language

Simple state-based language, based on the Reactive Models formalism of Alur and Henzinger.

Fundamental concepts:

- Modules
- Variables
- Parallel compositions of modules

The behaviour of each module is described by commands:

$$[label] g \rightarrow \lambda_1 : u_1 + \dots \lambda_n : u_n;$$

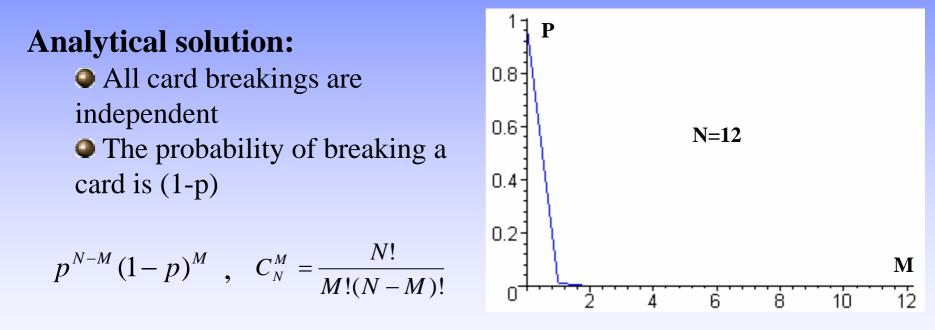
Super Single Mode

Do everything as fast as you can, and leave free space for personalized cards.Give uniform loading of stations

Personalization stations pad cards Unload cards \Diamond Belt

Simple failure Model

The model: Each card can be broken while personalization with the probability (1-p). In our case p = 0.999.



 $P(M \text{ of } N \text{ cards are broken}) = C_N^M p^{N-M} (1-p)^M$

Type I discrete Weibull distribution

$$R(k) = p^{k^{\beta}} - \text{reliability function}$$

$$\lambda(k) = 1 - p^{k^{\beta} - (k-1)^{\beta}} - \text{failure rate}$$

$$p \in] 0,1 [, \beta > 0, k \in N^{*}$$

$$P(k) = P(K = k) - \text{probability of}$$
failure at demand k
$$R(k) = P(K > k) - \text{probability not to}$$
fail during k demands

$$p = 0.999, \beta = 2.2$$

$$\beta > 1$$

$$k$$

$$k$$

$$\lambda(k) = P(K = k \mid K \ge k) = \frac{P(k)}{R(k-1)}$$

- probability to fail at demand k if it did not fail before.

Formal Methods and Tools Group,

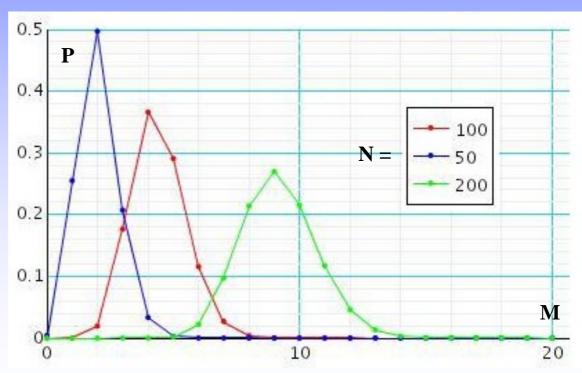
10

Twente, 2004

Simple Failure Model with Weibull distribution of failures

The model: Each card can be broken while personalization with the probability $\lambda(k)$ with p = 0.999, $\beta = 2.2$ where k is

the number of cards, correctly personalized, by the given station since it broke card for the last time.



One station results generalization

Uniform stations loading (SSM)Independent station failures

$$P_T^R(M \text{ of } N \text{ cards are broken}) = \sum_{M_1 + \ldots + M_N = M} \prod_{i=1}^R P_T^1\left(M_i \text{ of } \frac{N}{R} \text{ cards are broken}\right)$$

- ${\mathbb N}$ the total amount of cards
- $^{R}\,$ the number of stations, is the divisor of N
- $T \in \{\min, \max, _\}$
- P_T^1 the probability for one station

Formal Methods and Tools Group, Twente, 2004 Time

stations

Bel

Loading station

Unloading station

personalization

Model with the non-deterministic number of broken cards

The model:

4 personalization stations

Station can break each time it takes a new card with probability (1-p), p=0.999

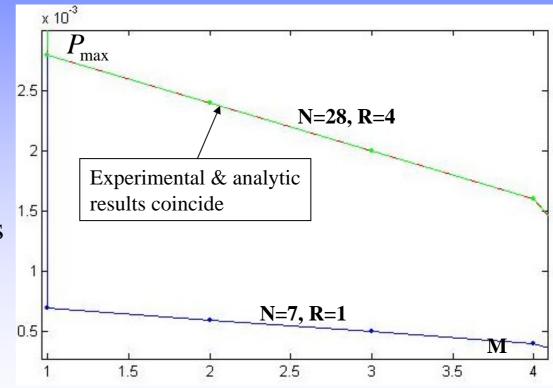
• After breaking it spoils any number of cards within [1,G], G=4



Non deterministic model for one card and it's extension

The model:

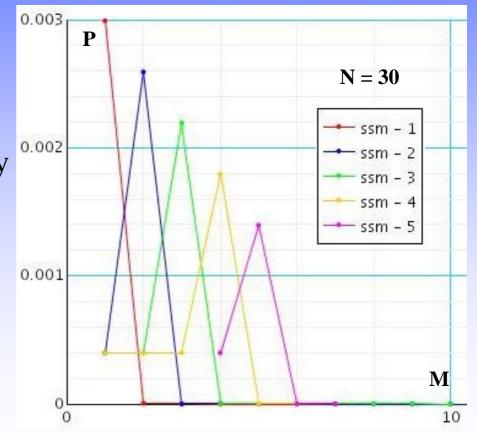
• One station, No time Station can break each time it takes a new card with probability (1-p), p=0.999 After breaking it spoils any number of cards within [1,G] •No belt, loading and unloading stations



Model with the fixed number of broken cards

The model:

4 personalization stations
Station can break each time it takes a new card with probability (1-p), p=0.999
After breaking it spoils the certain number of cards G=1,2,3,4,5



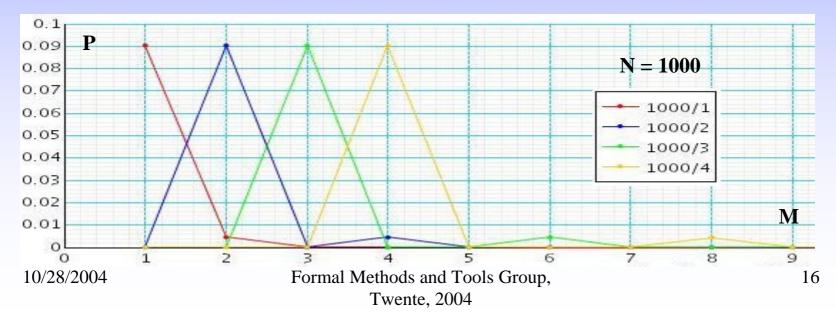
One station model with the fixed number of broken cards

The model:

One station, No time

Station can break each time it takes a new card with probability (1-p), p=0.999

After breaking it spoils the certain number of cards G=1,2,3,4,5
No belt, loading and unloading stations

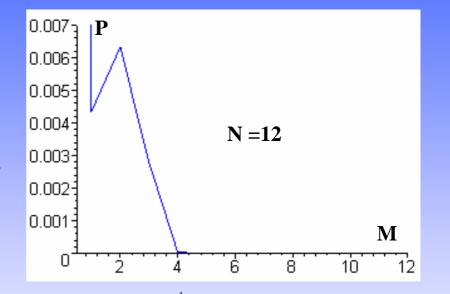


Model with fixed non-working time

The model:

Personalization station breaks
A constant time is needed for recovery
Personalization station can crash only while it is working

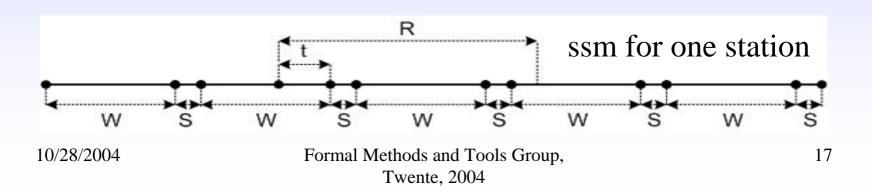
•Personalization station is recovering even if it doesn't work



 $\sum_{k=1}^{4} L_k = L$

 $\sum \prod P(S_{(N/4)} \leq L_k)$

Analytical solution: $P(N broken cards \leq L) =$

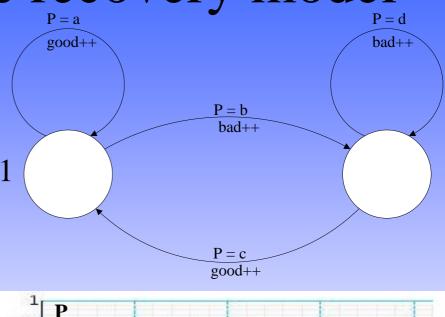


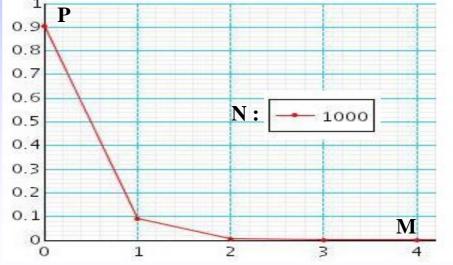
The probabilistic recovery model

The model:
Is a simple DTMC
One personalization station
a = c = 0.9999, b = d = 0.0001

Analytical solution:

$$\begin{cases} \overline{p}_{steady} \begin{pmatrix} I - \begin{pmatrix} a & b \\ c & d \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ p_{good} + p_{bad} = 1 \end{cases}$$
$$\overline{p}_{steady} = \begin{pmatrix} p_{good}, p_{bad} \end{pmatrix} = \begin{pmatrix} \frac{c}{b+c}, \frac{b}{b+c} \end{pmatrix} \\ \overline{p}_{steady} = (0.9999, 0.0001) \end{cases}$$





10/28/2004

Formal Methods and Tools Group, Twente, 2004 18

Conclusions

Different failure models were investigated and density functions were obtained

Analytical solutions were discovered for several models

• It was shown that because of the SSM and independency of personalization stations a simple "one station" model can be verified and then results can be extended to any number of personalization stations