
SSM Failure models 
Ivan S Zapreev 

 
 

The modifications table 
Date Description 

09.06.2004 Initial version with two models “Simple 
Failure model” and “Recovery model”. 

10.06.2004 Added two new models. One for fixed 
number of cards and one for nondeterministic 
number of cards. 

11.06.2004 Added few models (nondeterministic number 
of cards to fail with one station and a DTMC 
model) added all the rest models to the 
appendix 

14.06.2004 Added Fixed cards model for one station. 
Minor fixes. 

09.07.2004 Added model with the Weibull based 
distribution of failures. 

 
 

Table of contents 
1. Common description ...............................................................................................................3 
2. Simple Failure model ..............................................................................................................3 

a. Model description................................................................................................................3 
b. Modeling results ..................................................................................................................3 
c. Common formula derivation ...............................................................................................4 

3. Recovery model.......................................................................................................................6 
a. Model description................................................................................................................6 
b. Modeling results ..................................................................................................................6 
c. Common formula derivation ...............................................................................................7 

4. Fixed cards model for 4 stations and the schedule ................................................................10 
a. Model description..............................................................................................................10 
b. Modeling results ................................................................................................................10 

5. Nondeterministic cards model for 4 stations .........................................................................12 
a. Model description..............................................................................................................12 
b. Modeling results ................................................................................................................12 

6. Nondeterministic cards model for one station.......................................................................13 
a. Model description..............................................................................................................13 
b. Modeling results ................................................................................................................13 

7. DTMC model for one station ................................................................................................16 
a. Model description..............................................................................................................16 
b. Modeling results ................................................................................................................17 

8. Fixed cards model for one station .........................................................................................18 
a. Model description..............................................................................................................18 
b. Modeling results ................................................................................................................18 

9. Weibull based model for one station .....................................................................................19 
a. Model description..............................................................................................................19 
b. Modeling results ................................................................................................................20 

10. Conclusions .......................................................................................................................21 
11. Future work .......................................................................................................................21 



12. Appendix A. ......................................................................................................................21 
13. Appendix B........................................................................................................................22 
14. Appendix C........................................................................................................................24 
15. Appendix D. ......................................................................................................................25 
16. Appendix E. .......................................................................................................................27 
17. Appendix F. .......................................................................................................................27 
18. Appendix G. ......................................................................................................................28 
19. Appendix H. ......................................................................................................................28 

 2



 

1. Common description 
  Here we describe several models for the Cybernetix Case Study. 
 Originally the common basis for models is that there are 4 personalization stations and one load 
and unload station. System also contains a belt that can move only from left to right and which 
transfer personalizing cards. 
  There are the following limitations: 

• 10 time units are required to personalize card in a personalization station. 
• 1 time unit is required to move the belt. 
• 2 time units are required to load and unload card and while loading and/or unloading the 

belt can not move. 
• Getting and putting cards by personalization stations do not take time. 
• Card can stay in personalization station longer then the time required to personalize it. 

  The algorithm (further schedule) called Super Single Mode (SSM) for 4 personalization stations 
rules the whole system. 
  Our main interest is focused on involving probabilistic failures of personalization stations into 
this model and gathering probabilities for the number of broken cards. 
  In other words the main question here is: 
 
  If the system processes N cards then what is the probability that after the work is done the 
number of broken cards is equal to the certain value M? 
 
  Below we will introduce several personalization station failure models and will present results 
gathered by the model checking of these models and also some formulas that have been derived. 
Some of these models are very close to the description of the system presented above and some 
of them are very abstract but still make sense as allow calculating required probabilities easily. 

2. Simple Failure model 
  In this section we will present the model, which can be described as a model where cards can be 
broken by the personalization station with the certain probability. In other words personalization 
station is not crashing itself but can damage cards. 
 
a. Model description 
  The main idea of this model is that we involve broken cards. The order of broken cards in not 
relevant and so the whole schedule remains to be the SSM. 
  Each card after personalization is put to the belt and we assume that with probability p  it is not 
broken. We also assume that the value of p  is 0,999 and thus for each card the probability to be 
broken after personalization is equal to 0,001. 
 
b. Modeling results 
  The corresponding model has been created for the PRISM tool and was used with the SSM 
schedule for 12 cards. The resulting plot of gathered probabilities is present below (Figure 1.). 

 3



 
Figure 1. The probability that a certain number of 12 cards will be broken 

 
  The corresponding values are represented in the Table 1 below. 

 
M  )12( brokenarecardsofMP  
0 0.988065780494209 
1 0.01186865802395446 
2 6.534296209384338E-5 
3 2.1802790154769228E-7 
4 4.910538323146222E-10 
5 7.864726043077035E-13 
6 9.184698415338544E-16 
7 7.880479120839591E-19 
8 4.93022968020495E-22 
9 2.1934065978000004E-25 
10 6.586806600000001E-29 
11 1.1988000000000004E-32 
12 1.0000000000000004E-36 

Table 1. Values of the function present on the Figure 1 
 
  The used PRISM model without schedule is presented in the Appendix A. 
  Now let us try to derive the common probability formula for this model. 
 
c. Common formula derivation 
  It is obvious that if p is the probability for a card not to be broken then 

)1()|'( 1 ppbrokenbeennothascardspreviousAllbrokenbeenhascardthMP N −= −  
  As far as a personalized card can be marked as broken only while it is put to the belt by a 
personalization station. This process is independent from other personalization stations and 

 4



cards. Hence the probability that M  of cards will be broken by N K personalization stations 
that are present in the system is the following: 

MMN
K

i

MMN pppp iii )1()1(
1

−=− −

=

−∏  

where and . MM
K

i
i =∑

=1
NN

K

i
i =∑

=1

  Note that this formula is true for fixed and values, where is the expected number of 
broken cards produced by the station that totally processed  cards. If we also take into 
account the number of possible combinations then it is obvious that the probability that 

iM iN iM
thi' iN

M  of 
cards will be broken does not depend from the number of stations and schedule and is the 

following: 
N

MMNM
N ppCbrokenarecardsNofMP )1()( −= −  

where 
)!(!

!
MNM

NC M
N −

= . 

  This formula gives the same results as the ones gathered by the PRISM tool for the Simple 
Failure model. 
  Let’s now check the behavior of the function  for different values of 

. In this case we have the following simple formula to calculate probabilities: 
)1( brokeniscardsNofP

N
)1()1( 1 pNpbrokeniscardsNofP N −= −  

The plot of this function can be seen on the Figure 2. 

 
Figure 2. The  function values )1( brokeniscardsNofP

  It is obvious from the curve that is present on the Figure 2 that the probability that one card is 
broken is first increasing up to certain value and then is decreasing asymptotically approaching 
zero. This behavior is explained by the fact that although intuitively evident that the more cards 
are processed the higher should be the probability of that at least one card will be broken at the 

 5



same time as far as we deal with the increasing number of possibilities for the number of broken 
cards the probability of each one of them is getting lower. 

3. Recovery model 
  In this section we will present the model with failures in which personalization station crashes 
and needs a constant time to recover. During this time period it produces broken cards. 
a. Model description 
  The main limitations of this model are the following: 

• Personalization station can crash only while it is working or just holding a card and is not 
broken, 

• Personalization station is recovering even if it doesn’t work, 
• It requires a certain time to be repaired (25 time units for our PRISM model), 
• When broken a personalization station continues to personalize cards, 
• If a station was broken while personalizing a card then the card is marked as broken. 

b. Modeling results 
  The corresponding model has been created for the PRISM tool and was used with the SSM 
schedules for 12 cards. The resulting plot of gathered probabilities is present below (Figure 3.). 

 
Figure 3. The probability that a certain number of 12 cards will be broken 

 
  

 6



The corresponding values are presented in the Table 2. below. 
 

M  )12( brokenarecardsofMP  
0 0.9864913913197956 
1 0.004343187341540462 
2 0.006332348037085769 
3 0.002792335594596362 
4 2.4362908506248572E-5 
5 1.3370905148151182E-5 
6 2.965302750784101E-6 
7 2.7796552271929267E-8 
8 9.393831609268534E-9 
9 1.388770397019918E-9 
10 8.996876932987969E-12 
11 2.191359508694111E-12 
12 2.400380861370896E-13 

Table 2. Values of the function present on the Figure 3 
 
  The local maximum for two cards ( 2=M ) can be explained by the length of the recover period 
of the personalization station as 25 time units length repairing period almost each time covers 
two working periods of the personalization station except if station crashes during processing of 
the last card. 
  The used PRISM model without schedule is represented in the Appendix B. 
  Now let us try to derive the common probability formula for this model. 
 
c. Common formula derivation 
  For this model it goes without saying that probability of the certain cards to be broken depends 
on the used schedule. It is also quite obvious that SSM mode should have a working cycle for 
each personalization station so the algorithm can be stable. I.e. there should be a periodical 
sequence of working and suspending periods of certain length. 
  As far as we have SSM for 4 personalization stations it was experimentally checked that there 
is the same working cycle for each of four personalization stations. It is a sequence of constant 
suspending and working periods i.e. where  is the time while personalization station 
does not work (suspending period) and W is the time while personalization station works and 
holds a card. 

)(SW S

  It is quite obvious that this cycle doesn’t hold for the beginning of work and for the end of work 
i.e. when we process the first cards and the last cards but if the number of cards is big then most 
of them are processed by this working cycle. Experimentally it was found that 3=S  and 

. 12=W
Let us first consider a single personalization station with the working cycle and then extend this 
case for 4 personalization stations. 
Single personalization station 
  Let be the number of cards that will be broken in the situation when station 
crashes (Figure 4.). Here

),,,( tRSWM
R  is time needed for repairing,  is the suspending time of the 

personalization station, W is the working time of the personalization station and t  is the number 
of time units before the end of current working period of the personalization station. 

S

 7



 
Figure 4. 

 
then  can be calculated by the following formula: ),,,( tRSWM

( )tRSW
SW

StRtRSWM ,,,)(1),,,( δ+⎥⎦
⎤

⎢⎣
⎡

+
+−

+=  

where  is the integer part of the result, and [ ] ( ) ( )( ) ( )
⎩
⎨
⎧ >++−

=
else

SWStR
tRSW

,0
0/,1

,,,δ  

where  is a fractional part of the number including a sign of the number. 
  If   is the number of broken cards produced by one personalization station then for cards NS N

( ) WN
N pSP =≤ 0  

( ) ?=≤ LSP N  where 1..1 −∈ NL  
( ) 1=≤ NSP N  

It is easy to see that the first parity can be strengthened in the following way: 
( ) ( ) WN

NN pSPMSP =≤=≤ 0min  where ( )WRSWMM ,,,min =  
  Now let us define a set of equations and inequalities that can be used to calculate the value of 

 when . To do this first let us change the formulas in order to use the 
absolute time instead of t . 

( LSP N ≤ ) 1..1 −∈ NL

 Let time be the absolute time value i.e. time passes from the beginning of system working then: 

⎩
⎨
⎧ ≤+≤++−

==
else

WSWtimeifSWtimeW
timett

,0
)%(1,1)%(

)(  

Here  is a residue of division and inequality is used to state that a station can break only while 
it is working. 

%

Now we have . ))(,,,(),,( timetRSWMRSWM time =
If station has crashed at time then the next time it can crash is  and 1time 2time 21 timeRtime ≤+ . 
We should also note that if  

⎥⎦
⎤

⎢⎣
⎡

+
=⎥⎦

⎤
⎢⎣
⎡

+
+

SW
time

SW
Rtime 21  

then 
( ) 1,,

22
−= RSWMM timetime  

  Which means that in one working period personalization was broken at the beginning and after 
it had been repaired it crashed again but as far as the card that was processed had been already 
broken the number of broken cards for the next period is 1 card less (Figure 5.). 
 

 
Figure 5. 

 8



 
  Now as far as working time time  of the station is limited by the value  

WSWNtime ++−= ))(1(max  
we should also note that  

( ))(),(,,))(()(1),,( timettimeSW
SW

StimettimeRSWM time ℜ+⎥⎦
⎤

⎢⎣
⎡

+
+−ℜ

+= δ  

where , see Figure 6. 
⎩
⎨
⎧

−
≤+

=ℜ
elsetimetime

timeRtimeR
time

max

max)(

  This means that if the number of cards is limited then if the personalization station crashes 
while processing the last cards then the number of broken cards can be smaller then usually i.e. 
even smaller then . ( )WRSWMM ,,,min =
 

 
Figure 6. 

 
  With the help of formulas defined above we can calculate the set of sets of ordered times 
{ }{ }j

G
i

j
i

jtime 0= where such that 00 =jtime

( ) ∑
∑

−=≤ =

∆

j

i
G

N

jG

ij ppLSP 1)1(  

and  

LRSWMj
j

j
i

G

i
time

≤∀ ∑
=1

),,(
 

Here is measured by the following formula: i∆

( ) ( )
⎪⎩

⎪
⎨
⎧

≥−−+−⎥⎦
⎤

⎢⎣
⎡

+
−−−

+=∆ −
−

else

SRtimetimeif
SW

StimetimeW ii
ii

i

,

0, 1
1

τ

ττξτ
 

where 
( )( ) ( )( )ii timetWtimet −+= −1ξτ  

and 

( )
⎩
⎨
⎧ >+

=
else
zifRz

z
,0

0,
ξ  

and presents the amount of working time (station worked) between two successive crashes. 
 

 9



Four personalization stations 
  The previous result is valid for one personalization station to extend it for 4 stations we should 
keep in mind that all stations work independently and thus we have the following: 

( )
{ }
∑ ∏

=

=

∑
≤=≤

=

LL

L k
kN

k
k

k

LSPLcardsbrokenNP

4

1 4

1
4/ )()__(  

  The last formula assumes that total number of cards in the system equals and is a multiply of 
4. Each station processes the equal number of cards and  is the number of cards for i  station 
we expect to be broken. 

N
iL

  This formula looks quite ugly and also required a set of sets of ordered times and 
fragmentations of the expected total number of broken cards . That is why it can be quite 
difficult to use. 

L

In order to try to check this formula we can assume that 0=L and thus we have that  

( )
WN

k

NW

k
kN ppLSPcardsbrokenNP ==≤=≤ ∏∏

==

4

1

)4/(
4

1
4/ )()0__(  

  Of course this is insufficient to prove that it is correct but gives us hope that at least we are on 
the right way. Also note that this formula works only for the working cycle case when W and 

are constant and this is not the case for the model checked in PRISM. S

4. Fixed cards model for 4 stations and the schedule 
  In this section we will present the model with failures in which personalization station can crash 
each time it takes a new card and then breaks a certain amount of cards before it is repaired. 
a. Model description 
  The main idea of this model is that we involve the fixed number of cards that are broken while 
the personalization station is broken. The schedule remains to be the SSM. 
  A personalization station takes card from the belt and we assume that at this moment with 
probability p  it can crash. After crashing personalization station breaks a certain amount of 
cards and only after this it can crash again. 
  In this model the number of broken cards doesn’t depend from time but depends from the 
number of cards a personalization station has to process. In this sense as far as stations work 
independently we can calculate probabilities for one station and then extend them for bigger 
number of stations. 
 
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was used with the SSM 
schedules for 12/30 cards (Appendix C). The resulting plots of gathered probabilities are present 
below (Figure 7., Figure 8.). 
 

 10



 
Figure 7. The probability that a certain number of 12 cards will be broken 

 
  On the plots above (Figure 7.) we do not represent probability for 0 cards not to obscure the 
other values. There are four plots on the figure for different number of cards to be broken. For 
example “ssm–1” means that this is the plot of probabilities for the case when after one crash of 
personalization station it produces one bad card. 
  It is interesting to note that plots for “ssm-3”and “ssm-4” are the same. Right now there is no 
explanation to this. 

 
Figure 8. The probability that a certain number of 30 cards will be broken 

 11



  On the Figure 8 there are also plots for different number of cards to be broken. The moving 
maximum here is quite obvious as far as the number of cards that are broken after one station 
crashes affects this probabilities directly. 
  An open question is why the maximum probabilities are decreasing so rapidly with the 
increasing of the number of cards that are broken after one crash and why the number of cards 
before the first maximum is almost constant? 

5. Nondeterministic cards model for 4 stations 
  In this section we will present the model with failures in which personalization station can crash 
each time it takes a new card and then breaks a nondeterministic amount of cards from the 
certain interval before it is repaired. 
a. Model description 
  The main idea of this model is that we involve the interval for the number of cards that are 
broken while the personalization station is broken. Each time a certain number of cards are 
broken and this amount is selected nondeterministically. The schedule remains to be the SSM. 
  A personalization station takes card from the belt and we assume that at this moment with 
probability p  it can crash. After crashing personalization station breaks a nondeterministic 
number of cards within a certain interval after this it can crash again. 
  This model can also be reduced to calculation of probabilities for one station and then extension 
this for bigger number of stations. This will be discussed further for “Nondeterministic cards 
model for one station”. 
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was used with the SSM 
schedules for 12/30 cards (Appendix D). The resulting plots of gathered probabilities are present 
below (Figure 9.). 

 

 
Figure 9. The probability that a certain number of 30 cards will be broken 

 
  The model is nondeterministic and thus there are maximum and minimum probabilities for each 
upper bound of cards to be broken. 
  It is obvious that plots for min probabilities are the same as the lower bound of cards to be 
broken is always the same. 

 12



  The question is why for example “ssm max 30/4” is decreasing within interval [1,4] but is not 
constant? 

6. Nondeterministic cards model for one station 
  Here we reduce model to the one personalization station that can crash and break a 
nondeterministic number of cards within a certain interval before it is recovered. 
a. Model description 
  There is no belt, no loader and unloader in this model. There is also no schedule and timing as 
far as station simply takes a card and at this moment decides whether to crash or not if it crashes 
then it starts to break cards and breaks a nondeterministic amount of cards form a certain interval 
and then it works properly again. 
  The results of this model can be extended then to the results of the “Nondeterministic cards 
model for R  stations” as far as stations work independently and the schedule is here is not 
important as it only provides a station with a certain number of cards to process. Note that with 
SSM schedule each station processes equal number of cards. So here R  is the devisor of the total 
number of cards. 
  That is why the results for the model with R  stations can be extended via the following 
formula: 

( ) ∑ ∏
=++ =

⎟
⎠
⎞

⎜
⎝
⎛=

MMM

R

i
iT

R
T

N

brokenarecardsNofMPbrokenarecardsNofMP
K1 1

1

4
 

  Here R  is a devisor of ,  is the total number of cards, N N M  is the total number of cards to be 
broken,T ,  is the total probability for the { }maxmin,∈ N

TP R stations,  is the calculated before 
probability for one station. 

1
TP

  This formula is also applicable to the deterministic variant where there is the fixed number of 
cards to be broken; in this case the index T  should be removed. 
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was tested with 1000 cards 
(Appendix E). The resulting plots of gathered probabilities are present below (Figure 10.,Figure 
11.). 

 

 13



Figure 10. The Max probability that a certain number of 1000 cards will be broken with a 
maximum 4 cards broken after each crash of personalization station. 

  Here it is quite obvious that there are stairs with the same probabilities because for 1,2,3 and 4 
cards to be broken there is no determinism and the different is made by the slightly different 
number of combinations of paths that lead to the given number of broken cards. This behavior is 
periodic. 

 
  Figure 11. The Min probability that a certain number of 1000 cards will be broken with a 

maximum 4 cards broken after each crash of personalization station. 
 

  Now if we extend the maximum probabilities up to 4 stations then we get the following plot 
(Figure 12.) 

 

 14



 
Figure 10. The Max probability that a certain number of 1000 cards will be broken with a 

maximum 4 cards broken after each crash of personalization station. 
  On this figure the green plot is the resulting plot and the blue one is the initial plot for one 
personalization station. 
  PRISM can’t run model with 4 stations, SSM and with 4000 cards that is why the gathered plot 
can’t be verified. We have performed the following experiment to check the extendibility issue. 
  The idea of the experiment is simple; calculate max probabilities for 7 cards 1 personalization 
station and the maximum 4 cards broken after crash of personalization station and then extend 
them up to the 4 personalization stations and 28 cards. After that all we have to do is to compare 
them with the results gathered for 4 stations and 28 cards. He results are on the figure below 
(Figure 11.). 

 15



Figure 11. The Max probabilities for 1 station and 7 cards (blue) gathered by PRISM, The Max 
probabilities for 4 station and 28 cards (green) calculated via formula, The Max probabilities for 

4 station and 28 cards (red) gathered by PRISM. 
  Here we can see that the probabilities calculated by the formula are almost the same as the 
probabilities gathered by PRIZM. The difference could be explained by the loss of precision. 

7. DTMC model for one station 
  This model is simply a DTMC. We have one personalization station that processes cards one by 
one and each time it takes a card it can crash with a certain probability, after it crashed it starts to 
produce broken cards but each time it produces a card it can repair with the certain probability. 
In other words there is a probability to crash and then a probability to repair. 
a. Model description 
  In this model there are only two states. First state is for the properly working personalization 
station and a second one for the broken one. The probability to move from the first state to the 
second one is 0,001. It means that each time station processes a card it can crash and become 
broken. After this we are in the second state and here there is also a probability to recover that 
was taken as 0,999.  
  On the Figure 12 there is a Transition system that represents the model described above. 

 16



P = a P = d  

Acting Broken

 

good++ bad++ 

P = b

bad++ 

P = c 

 
 

good++

Figure 12. The DTMC for the one personalization station with a probability to recover 
 
  The probability values here are present as parameters for generalization.  
  As far as we have a DTMC we can compute the stable state probabilities. Their calculation is 
below: 
If ( )badgoodstable ppp ,=  then we should solve the following set of linear equations: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=+
=+
=+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1
1
1

0
0

badgood

stable

pp
dc
ba

dc
ba

Ip

 

The solution here is simple and is the following: 

⎟
⎠
⎞

⎜
⎝
⎛

++
=

cb
b

cb
cpstable ,  

In our model we have the following values for the parameters: dcba ,,,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
=
=
=

999.0
001.0
001.0
999.0

d
c
b
a

 

  Knowing the stable state probabilities we can forecast the number of broken cards after the 
work of this personalization on the certain amount of cards. Lets say we have 1000 а cards then: 

( ) ( )001.0,999.0,, =⎟
⎠
⎞

⎜
⎝
⎛

++
==

cb
b

cb
cppp badgoodstable  

That is why after processing 1000 cards we can presume that there will be one broken card. 
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was tested with 1000 cards 
(Appendix F). The resulting plots of gathered probabilities are present below (Figure 13.). 

 17



 
Figure13. The probability that a certain number of 1000 cards will be broken 

8. Fixed cards model for one station 
  In this section we will present the model with failures in which there is one personalization 
station and it can crash each time it takes a new card and then breaks a certain amount of cards 
before it is repaired. 
a. Model description 
   The main idea of this model is that we involve the fixed number of cards that are broken while 
the personalization station is broken. There is no schedule and there is only one personalization 
station. 
  A personalization station takes card and we assume that at this moment with probability p  it 
can crash. After crashing personalization station breaks a certain amount of cards and only after 
this it can crash again. 
  In this model there is no timing and scheduling and that is why it is represented by a simple 
automata. In this sense if we assume that we have several stations and they work independently 
we can calculate probabilities for one station and then extend them to a bigger number of 
stations.  
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was tested with 1000 cards 
(Appendix G). The resulting plots of gathered probabilities are present below (Figure 14.). 
  On this figure there are 4 different plots each of them for a certain fixed number of cards to be 
broken after personalization station crashes. For instance “1000/2” means that personalization 
station was tested with 1000 cards and the fixed number of cards to be broken after one crash 
was equal 2. 
  We can see a periodical behavior of plots i.e. there are local maximums in the points that are 
divisible by the number of cards to be broken and this is an expected behavior.  

 18



 
Figure 14. The probability that a certain number of 1000 cards will be broken 

9. Weibull based model for one station 
  In this section we will present the model with failures in which there is one personalization 
station and it breaks cards depending on the probability defined by the variant of the Weibull 
discrete distribution. 
a. Model description 
  This model is almost the same as the initial Simple Failure model but there is one significant 
difference. The probability to break a card depends on the number of good cards produced 
since the last failure. The distribution that is used is called the type I discrete Weibull 
distribution and is defined by the following reliability function  and the failure rate

k

)(kR )(kλ : 
βkqkR =)( , 

ββ

λ )1(1)( −−−= kkqk  
  Where .  If ] [ *,0,1,0 Nkq ∈>∈ β 1>β  then the distribution is IFR (Increasing Failure Rate 
distribution i.e. the failure rate increases with increasing of ).  k
As far as we need to implement the wear out of the personalization station we need exactly that 
type of distribution. 
  To make things clear let us explain the probabilistic meaning of the reliability function  
and failure rate 

)(kR
)(kλ : 

  Let be the probability of failure of the device on any demand  ()()( kKPkp == k K  is a 
random variable – the number of demands until the first failure). Then the reliability function 

gives the probability that the device is still alive at demand . The failure rate )()( kKPkR >= k

)(kλ is then defined as 
)1(

)()|()(
−

=≥==
kR

kpkKkKPkλ  and gives the conditional probability 

of failure of the device on the demand k  given that it didn’t fail before. 
  We should note that after each failure of personalization station the wear out process starts from 
the very beginning i.e. like the personalization station is immediately replaced by a new one. The 
probability of failure at each  is defined by the k )(kλ (  is the number of good cards produced 
since the last failure) and 

k
q−= 1)1(λ where  is the probability not to fail at the first demand 

(while personalizing of the first card). 
q

 19



  The only one problem here is to select the value of β . Originally there are several statistical 
methods to estimate the parameter value which are based on the statistical analysis but as far as 
we have no information about the wear out of personalization station except that it breaks at least 
1 card among 1000 cards we can take 999.0,2.2 == qβ .  

 
Figure 15. The )(kλ  for 999.0,2.2 == qβ  

  On the Figure 15 there is a plot that shows behavior of )(kλ  for 999.0,2.2 == qβ . The idea is 
that the probability to fail after producing 999 good cards is almost 1. 

 
b. Modeling results 
  The corresponding model had been created for the PRISM tool and was run with 500,200,100 
and 50 cards (Appendix H). The resulting plots of gathered probabilities are presented below 
(Figure 16.). 
  On this figure there are 3 different plots each of them for a different number of input cards 
(50/100/200). 

 20



 
Figure 16. The probability that a certain number of 200/100/50 cards will be broken 

10. Conclusions 
  In this report we described the different models that emulate the personalization stations 
failures. There are some experimental results gathered for these models and also theoretical 
derivations the aim of which was to investigate the models in depth and to create formulas for 
calculation of required probabilities. In the simplest cases (Simple Failure Model, DTMC) we 
were able to create the formulas that give analytical results, which conform the results gathered 
by PRISM. For the more complicated cases this is still a matter of further investigation. 

11. Future work 
In the future the following issues could be studied: 

• There are still issues to be explained in the gathered results, 
• Some of presented models can be tried to be solved analytically, 

12. Appendix A. 
nondeterministic 
//The number of cards 
const int N = 12; 
//The empty cell value 
const int EMPTY_CELL = 0; 
//The cell with a card 
const int WITH_CARD_CELL = 1; 
//The cell with a bad card 
const int BROKEN_CARD_CELL = 2; 
 
module unload 
  unloadCell : [EMPTY_CELL..WITH_CARD_CELL]; 
  
  [unload] true -> (unloadCell'=WITH_CARD_CELL); 
 
  [tick] !belt_is_going_to_move -> (unloadCell'=unloadCell); 
  [tick] belt_is_going_to_move -> (unloadCell'=EMPTY_CELL); 
endmodule 
 
//True if we try to unload the bad card 
formula bad_card =  loadCell = BROKEN_CARD_CELL; 
 
module load 
  loadCell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
 

 21



  bad_cards_counter : [0..N]; 
   
  [load] !bad_card -> (loadCell'=EMPTY_CELL); 
  [load] bad_card -> (loadCell'=EMPTY_CELL) & (bad_cards_counter'=bad_cards_counter+1); 
 
  [tick] !belt_is_going_to_move -> (loadCell'=loadCell); 
  [tick] belt_is_going_to_move -> (loadCell'=v4Cell); 
endmodule 
 
module v1 
  v1Cell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
 
  //Get the card from the belt (it takes no time) 
  [get_v1] true -> (v1Cell'=EMPTY_CELL); 
  //Put the card to the belt 
  [put_v1] true -> 0.999 : (v1Cell'=WITH_CARD_CELL) + 0.001 : (v1Cell'=BROKEN_CARD_CELL); 
 
  [tick] !belt_is_going_to_move -> (v1Cell'=v1Cell); 
  [tick] belt_is_going_to_move -> (v1Cell'=unloadCell); 
endmodule 
 
module v2 = v1 [v1Cell = v2Cell, unloadCell = v1Cell ] endmodule 
 
module v3 = v1 [v1Cell = v3Cell, unloadCell = v2Cell ] endmodule 
 
module v4 = v1 [ v1Cell = v4Cell, unloadCell = v3Cell ] endmodule 
 
module belt 
  belt_is_going_to_move : bool init false; 
 
  //Decide that the belt if going to move 
  [shift] true -> (belt_is_going_to_move'=true); 
 
  //Reset the flag value. It doesn't matter whether the belt is going to move or not. 
  [tick] true -> (belt_is_going_to_move'=false);  
endmodule 
 
module scheduler 
  //12 cards, 4 stations work. 
endmodule 
 
system 
  scheduler || belt || unload || load || v1 || v2 {get_v1 <- get_v2, put_v1 <- put_v2} || v3 {get_v1 <- 
get_v3, put_v1 <- put_v3} || v4 {get_v1 <- get_v4, put_v1 <- put_v4} 
endsystem 

13. Appendix B. 
nondeterministic 
//The number of cards 
const int N = 12; 
//The empty cell value 
const int EMPTY_CELL = 0; 
//The cell with a card 
const int WITH_CARD_CELL = 1; 
//The cell with a bad card 
const int BROKEN_CARD_CELL = 2; 
//The time to fix the station; 
const int FIX_TIME = 25; 
 
module unload 
  unloadCell : [EMPTY_CELL..WITH_CARD_CELL]; 
  

 22



  [unload] true -> (unloadCell'=WITH_CARD_CELL); 
 
  [tick] !belt_is_going_to_move -> (unloadCell'=unloadCell); 
  [tick] belt_is_going_to_move -> (unloadCell'=EMPTY_CELL); 
endmodule 
 
//True if we try to unload the bad card 
formula bad_card =  loadCell = BROKEN_CARD_CELL; 
 
module load 
  loadCell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
 
  bad_cards_counter : [0..N]; 
   
  [load] !bad_card -> (loadCell'=EMPTY_CELL); 
  [load] bad_card -> (loadCell'=EMPTY_CELL) & (bad_cards_counter'=bad_cards_counter+1); 
 
  [tick] !belt_is_going_to_move -> (loadCell'=loadCell); 
  [tick] belt_is_going_to_move -> (loadCell'=v4Cell); 
endmodule 
 
module v1 
  v1Cell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
  v1_is_working : bool init false; 
  v1_counter : [0..FIX_TIME]; 
 
  //Get the card from the belt (it takes no time) 
  [get_v1] true -> (v1Cell'=EMPTY_CELL) & (v1_is_working'=true); 
  //Put the card to the belt 
  [put_v1] v1_counter=FIX_TIME -> (v1Cell'=BROKEN_CARD_CELL) & (v1_is_working'=false) & 
(v1_counter'=0); 
  [put_v1] v1_counter>0 & v1_counter<FIX_TIME -> (v1Cell'=BROKEN_CARD_CELL) & 
(v1_is_working'=false); 
  [put_v1] v1_counter=0 -> (v1Cell'=WITH_CARD_CELL) & (v1_is_working'=false); 
 
  //If we are not working then we can not break 
  //If we are not working but have been fixed already then indicate this. 
  [tick] ( v1_counter=0 | v1_counter=FIX_TIME ) & !v1_is_working & !belt_is_going_to_move -> 
(v1Cell'=v1Cell) & (v1_counter'=0); 
  [tick] ( v1_counter=0 | v1_counter=FIX_TIME ) & !v1_is_working & belt_is_going_to_move -> 
(v1Cell'=unloadCell) & (v1_counter'=0); 
 
  //If we are working and have been fixed already then wait until put to indicate this 
  [tick] (v1_counter=0 | v1_counter=FIX_TIME) & v1_is_working & !belt_is_going_to_move -> 0.9999: 
(v1Cell'=v1Cell) + 0.0001: (v1Cell'=v1Cell) & (v1_counter'=1); 
  [tick] (v1_counter=0 | v1_counter=FIX_TIME) & v1_is_working & belt_is_going_to_move -> 0.9999: 
(v1Cell'=unloadCell) + 0.0001: (v1Cell'=unloadCell) & (v1_counter'=1); 
 
  //If we have been breaken then we are fixing in any case 
  [tick] v1_counter>0 & v1_counter<FIX_TIME & !belt_is_going_to_move -> (v1Cell'=v1Cell) & 
(v1_counter'=v1_counter+1); 
  [tick] v1_counter>0 & v1_counter<FIX_TIME & belt_is_going_to_move -> (v1Cell'=unloadCell) & 
(v1_counter'=v1_counter+1); 
 
endmodule 
 
module v2 = v1 [v1_is_working=v2_is_working, v1_counter=v2_counter, v1Cell = v2Cell, unloadCell 
= v1Cell ] endmodule 
 
module v3 = v1 [v1_is_working=v3_is_working, v1_counter=v3_counter, v1Cell = v3Cell, unloadCell 
= v2Cell ] endmodule 
 

 23



module v4 = v1 [v1_is_working=v4_is_working, v1_counter=v4_counter, v1Cell = v4Cell, unloadCell 
= v3Cell ] endmodule 
 
module belt 
  belt_is_going_to_move : bool init false; 
 
  //Decide that the belt if going to move 
  [shift] true -> (belt_is_going_to_move'=true); 
 
  //Reset the flag value. It doesn't matter whether the belt is going to move or not. 
  [tick] true -> (belt_is_going_to_move'=false);  
endmodule 
 
module scheduler 
  //12 cards, 4 stations work. 
endmodule 
 
system 
  scheduler || belt || unload || load || v1 || v2 {get_v1 <- get_v2, put_v1 <- put_v2} || v3 {get_v1 <- 
get_v3, put_v1 <- put_v3} || v4 {get_v1 <- get_v4, put_v1 <- put_v4} 
endsystem 

14. Appendix C. 
 

nondeterministic 
//The number of cards 
const int N = 12; 
//The empty cell value 
const int EMPTY_CELL = 0; 
//The cell with a card 
const int WITH_CARD_CELL = 1; 
//The cell with a bad card 
const int BROKEN_CARD_CELL = 2; 
//The the number of cards to be BROKEN after single personalization station crash 
const int NUMBER_OF_CARDS_TO_BE_BROKEN; 
 
module unload 
  unloadCell : [EMPTY_CELL..WITH_CARD_CELL]; 
  
  [unload] true -> (unloadCell'=WITH_CARD_CELL); 
 
  [tick] !belt_is_going_to_move -> (unloadCell'=unloadCell); 
  [tick] belt_is_going_to_move -> (unloadCell'=EMPTY_CELL); 
endmodule 
 
//True if we try to unload the bad card 
formula bad_card =  loadCell = BROKEN_CARD_CELL; 
 
module load 
  loadCell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
 
  bad_cards_counter : [0..N]; 
   
  [load] !bad_card -> (loadCell'=EMPTY_CELL); 
  [load] bad_card -> (loadCell'=EMPTY_CELL) & (bad_cards_counter'=bad_cards_counter+1); 
 
  [tick] !belt_is_going_to_move -> (loadCell'=loadCell); 
  [tick] belt_is_going_to_move -> (loadCell'=v4Cell); 
endmodule 
 
module v1 
  v1Cell : [EMPTY_CELL..BROKEN_CARD_CELL]; 

 24



  v1_counter : [0..NUMBER_OF_CARDS_TO_BE_BROKEN]; 
 
  //Get the card from the belt (it takes no time) 
  [get_v1] true -> 0.9999: (v1Cell'=EMPTY_CELL) + 0.0001: (v1Cell'=EMPTY_CELL) & 
(v1_counter'=1); 
 
  //Put the card to the belt 
  [put_v1] v1_counter=0 -> (v1Cell'=WITH_CARD_CELL); 
  [put_v1] v1_counter>0 & v1_counter<NUMBER_OF_CARDS_TO_BE_BROKEN -> 
(v1Cell'=BROKEN_CARD_CELL) & (v1_counter'=v1_counter+1); 
  [put_v1] v1_counter=NUMBER_OF_CARDS_TO_BE_BROKEN -> 
(v1Cell'=BROKEN_CARD_CELL) & (v1_counter'=0); 
 
  [tick] !belt_is_going_to_move -> (v1Cell'=v1Cell); 
  [tick] belt_is_going_to_move -> (v1Cell'=unloadCell); 
 
endmodule 
 
module v2 = v1 [v1_counter=v2_counter, v1Cell = v2Cell, unloadCell = v1Cell ] endmodule 
 
module v3 = v1 [v1_counter=v3_counter, v1Cell = v3Cell, unloadCell = v2Cell ] endmodule 
 
module v4 = v1 [v1_counter=v4_counter, v1Cell = v4Cell, unloadCell = v3Cell ] endmodule 
 
module belt 
  belt_is_going_to_move : bool init false; 
 
  //Decide that the belt if going to move 
  [shift] true -> (belt_is_going_to_move'=true); 
 
  //Reset the flag value. It doesn't matter whether the belt is going to move or not. 
  [tick] true -> (belt_is_going_to_move'=false);  
endmodule 
 
module scheduler 
  //Here should be a ssm schedule for 12 cards 
 
endmodule 
 
system 
  scheduler || belt || unload || load || v1 || v2 {get_v1 <- get_v2, put_v1 <- put_v2} || v3 {get_v1 <- 
get_v3, put_v1 <- put_v3} || v4 {get_v1 <- get_v4, put_v1 <- put_v4} 
endsystem 

15. Appendix D. 
 
nondeterministic 
//The number of cards 
const int N = 12; 
//The empty cell value 
const int EMPTY_CELL = 0; 
//The cell with a card 
const int WITH_CARD_CELL = 1; 
//The cell with a bad card 
const int BROKEN_CARD_CELL = 2; 
//The max number of cards to be broken after single personalization station crash 
const int MAX_NUMBER_OF_CARDS_TO_BE_BROKEN; 
 
module unload 
  unloadCell : [EMPTY_CELL..WITH_CARD_CELL]; 
  
  [unload] true -> (unloadCell'=WITH_CARD_CELL); 

 25



 
  [tick] !belt_is_going_to_move -> (unloadCell'=unloadCell); 
  [tick] belt_is_going_to_move -> (unloadCell'=EMPTY_CELL); 
endmodule 
 
//True if we try to unload the bad card 
formula bad_card =  loadCell = BROKEN_CARD_CELL; 
 
module load 
  loadCell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
 
  bad_cards_counter : [0..N]; 
   
  [load] !bad_card -> (loadCell'=EMPTY_CELL); 
  [load] bad_card -> (loadCell'=EMPTY_CELL) & (bad_cards_counter'=bad_cards_counter+1); 
 
  [tick] !belt_is_going_to_move -> (loadCell'=loadCell); 
  [tick] belt_is_going_to_move -> (loadCell'=v4Cell); 
endmodule 
 
module v1 
  v1Cell : [EMPTY_CELL..BROKEN_CARD_CELL]; 
  v1_counter : [0..MAX_NUMBER_OF_CARDS_TO_BE_BROKEN]; 
 
  //Get the card from the belt (it takes no time) 
  [get_v1] true -> 0.9999: (v1Cell'=EMPTY_CELL) + 0.0001: (v1Cell'=EMPTY_CELL) & 
(v1_counter'=1); 
 
  //Put the card to the belt 
  [put_v1] v1_counter=0 -> (v1Cell'=WITH_CARD_CELL); 
 
  [put_v1] v1_counter>0 & v1_counter<MAX_NUMBER_OF_CARDS_TO_BE_BROKEN -> 
(v1Cell'=BROKEN_CARD_CELL) & (v1_counter'=v1_counter+1); 
  [put_v1] v1_counter>0 & v1_counter<MAX_NUMBER_OF_CARDS_TO_BE_BROKEN -> 
(v1Cell'=BROKEN_CARD_CELL) & (v1_counter'=0); 
 
  [put_v1] v1_counter=MAX_NUMBER_OF_CARDS_TO_BE_BROKEN -> 
(v1Cell'=BROKEN_CARD_CELL) & (v1_counter'=0); 
 
  [tick] !belt_is_going_to_move -> (v1Cell'=v1Cell); 
  [tick] belt_is_going_to_move -> (v1Cell'=unloadCell); 
 
endmodule 
 
module v2 = v1 [v1_counter=v2_counter, v1Cell = v2Cell, unloadCell = v1Cell ] endmodule 
 
module v3 = v1 [v1_counter=v3_counter, v1Cell = v3Cell, unloadCell = v2Cell ] endmodule 
 
module v4 = v1 [v1_counter=v4_counter, v1Cell = v4Cell, unloadCell = v3Cell ] endmodule 
 
module belt 
  belt_is_going_to_move : bool init false; 
 
  //Decide that the belt if going to move 
  [shift] true -> (belt_is_going_to_move'=true); 
 
  //Reset the flag value. It doesn't matter whether the belt is going to move or not. 
  [tick] true -> (belt_is_going_to_move'=false);  
endmodule 
 
module scheduler 
  //Here should be a ssm schedule for 12 cards 
 

 26



endmodule 
 
system 
  scheduler || belt || unload || load || v1 || v2 {get_v1 <- get_v2, put_v1 <- put_v2} || v3 {get_v1 <- 
get_v3, put_v1 <- put_v3} || v4 {get_v1 <- get_v4, put_v1 <- put_v4} 
endsystem 

16. Appendix E. 
 
nondeterministic 
//The number of cards 
const int N; 
const int MAX_NUM_OF_BROKEN_CARDS; 
 
module v1 
  good : [0..N]; 
  bad : [0..N]; 
  state : [0..MAX_NUM_OF_BROKEN_CARDS]; 
 
  [] (state=0) & (good+bad<N) -> 0.9999: (good'=good+1) + 0.0001: (state'=state+1) & (bad'=bad+1); 
    
  [] (state>0) & (state<MAX_NUM_OF_BROKEN_CARDS) & (good+bad<N) -> (state'=state+1) & 
(bad'=bad+1); 
  [] (state>0) & (state<=MAX_NUM_OF_BROKEN_CARDS) & (good+bad<N) -> (state'=0); 
 
  [] (good+bad=N) -> (good'=good); 
 
endmodule 

17. Appendix F. 
 
stochastic 
//The number of cards 
const int N; 
//The Probability for station to crash 
const double P_CRASH = 0.9999; 
//The Probability for station not to crash 
const double P_N_CRASH = 1-P_CRASH; 
//The Probability for station to recover 
const double P_RECOVER = 0.9999; 
//The Probability for station not to recover 
const double P_N_RECOVER = 1-P_RECOVER; 
 
//States markers 
const int WORK = 0; 
const int FAIL = 1; 
 
module v1 
  good : [0..N]; 
  bad : [0..N]; 
  state : [0..1]; 
 
  //If the station works correctly then it can crash 
  [] (state=WORK) & (good+bad<N) -> P_CRASH: (good'=good+1) + P_N_CRASH: (state'=FAIL) & 
(bad'=bad+1); 
    
  //If the station is crashed then it can be repaired 
  [] (state=FAIL) & (good+bad<N) -> P_RECOVER: (state'=WORK) & (good'=good+1) + P_N_RECOVER: 
(bad'=bad+1); 
 
  [] (good+bad=N) -> (good'=good); 

 27



 
endmodule 

18. Appendix G. 
stochastic 
//The number of cards 
const int N; 
//The Probability for station to crash 
const double P_CRASH = 0.9999; 
//The Probability for station not to crash 
const double P_N_CRASH = 1-P_CRASH; 
 
const int MAX_NUMBER_OF_BROKEN_CARDS; 
 
module v1 
  good : [0..N]; 
  bad : [0..N]; 
  state : [0..MAX_NUMBER_OF_BROKEN_CARDS]; 
 
  //If the station works then it can crash 
  [] (state=0) & (good+bad<N) -> P_CRASH: (good'=good+1) + P_N_CRASH: (state'=1) & (bad'=bad+1); 
    
  //If the station was crashed break cards 
  [] (state>0) & (state<MAX_NUMBER_OF_BROKEN_CARDS) & (good+bad<N) -> (bad'=bad+1) & 
(state'=state+1); 
 
  //Return to initial state 
  [] (state=MAX_NUMBER_OF_BROKEN_CARDS) & (good+bad<N) -> (state'=0); 
 
  [] (good+bad=N) -> (good'=good); 
 
endmodule 

19. Appendix H. 
//The number of cards 
const int N; 
 
module v1 
  num_good : [0..N]; 
  good : [0..N]; 
  bad : [0..N]; 
 
//If the station works correctly then it can crash 
[] (good+bad<N) & (num_good=0) -> 0.999: (num_good'=num_good+1) & (good'=good+1) + 0.001: 
(num_good'=0) & (bad'=bad+1); 
 
….. 
 
[] (good+bad<N) & (num_good=499) -> 0.02215642796437467: (num_good'=num_good+1) & 
(good'=good+1) + 0.9778435720356253: (num_good'=0) & (bad'=bad+1); 
 
  [] (good+bad=N) -> (good'=good); 
 
endmodule 

 28


	Ivan S Zapreev
	The modifications table
	Date
	Description



	Common description
	Simple Failure model
	Model description
	Modeling results
	Common formula derivation

	Recovery model
	Model description
	Modeling results
	Common formula derivation
	Single personalization station
	Four personalization stations


	Fixed cards model for 4 stations and the schedule
	Model description
	Modeling results

	Nondeterministic cards model for 4 stations
	Model description
	Modeling results

	Nondeterministic cards model for one station
	Model description
	Modeling results

	DTMC model for one station
	Model description
	Modeling results

	Fixed cards model for one station
	Model description
	Modeling results

	Weibull based model for one station
	Model description
	Modeling results

	Conclusions
	Future work
	Appendix A.
	Appendix B.
	Appendix C.
	Appendix D.
	Appendix E.
	Appendix F.
	Appendix G.
	Appendix H.

		http://www.cs.utwente.nl/~zapreevis
	2004-08-09T16:02:34+0200
	Enschede
	Ivan S Zapreev
	I am the author of this document




