
Description of the C#-light programs verification system
The developing C#-light programs verification system consists of the following components:

The 'C# light to USL'
translation component

The 'C# light to C# kernel'
transformation component

The correctness rules
generator component

The correctness rules
specification component

The proof component The results analysis
component

 The verification process is done step by step. Each step is supported by the corresponding
system component. In other words the system has so called ‘module’ architecture that allows to
develop each of its components almost independently.
 While working with the system user adds annotations to a program and starts its verification.
The first step of the verification process is translation of the C#-light program source code to the
universal USL representation. Further all other components work with this USL representation.
 After the ‘C#-light to USL’ translation the ‘C#-light to C# kernel‘ transformer component starts
to work. The aim of its work is to transform the C#-light language structures to the C# kernel
language structures which are much simpler. During this process the USL representation of the
program is transformed via the special interface provided by the component of ‘C#-light to USL’
translation.
 When the C#-light program is transformed to the C# kernel the correctness conditions generator
component starts to work. The result of its work is the set of lemmas about the verifying program
and we need to prove them to verify the program. It is important to note that while the
correctness conditions generation process we use the symbolic substitutions for lazy
computations of some program characteristics. For example we use them in case of
determination of the overloaded function that is called.
 Now it is obvious that before the proof component will start to work someone should resolve all
substitutions in the correctness conditions. The component that is responsible for this process is
called the component of the correctness conditions specification. This component is responsible
for resolving of all lazy computations in the generated correctness conditions. This component
uses the proof component to get all required auxiliary data about the program. The process of
partial program interpretation is used to gather this data.
 When the correctness conditions are specified the proof component starts to work. It proves the
specified correctness conditions gathered on the previous step. After the proof process finishes
the results analysis component determines whether user should have to add additional
annotations to the program or the verification process has passed. In the last case we have two
possibilities. The first one is that the program conforms to the given specifications and then
everything is fine. The second one is that the program does not conform to the given
specifications and then corresponding error messages are provided.
 The following activity diagram describes the verification system work algorithm:

Verification condition
generation

Results analysis

Verification condition
proving

C# light to C# kernel
transformation

User annotates the
C# light program

C# light to USL translation

Verification condition
refinement

[else][need to add annotations]

 Further we will describe each of the system’s components with more details.

1. The C#-light to USL translation component
 Translation of a C#-light program to a USL representation is one of the first stages in the C#-
light programs verification process. The main task of this step is translation of a C#-light
program to a USL expression according to the rules defined for translation of C#-light language
structures to USL.
 The C#-light to USL translation component consists of the following parts:

• USL expressions class library
• C#-light language’s USL expressions class library
• C#-light program’s data gathering sub component
• C#-light program’s USL expression creation sub component
• USL expressions manipulations sub component

o USL expressions by-pass classes
o USL expressions search classes
o USL expressions modification classes

 The component diagram listed below shows the sub components structure of the C#-light to
USL translation component and its relations with the other components:

C# light to USL translation component

C# light program's data gathering
sub component

USL expressions's class
library

C# light program's USL expression
creation sub component

C# light language's USL
expressions class library

USL expressions
manipulations sub component

The 'C# light to C# kernel'
transformation component

The correctness rules
generator component

Mono C#
Compiler

The correctness rules
specification component

The proof
component

The C#-light to USL translation component’s sub components are marked with the green color.
Yellow components are the verification system’s components mentioned earlier. The white
component is the external component that is used in the system.
 The C#-light to USL translation component provides program’s data through interfaces used by
the C#-light to C# kernel transformation, correctness conditions generator components and
others.
 It is obvious that an important step of the component’s work is the step of gathering of the C#-
light program data and creation of the corresponding USL expression. This step presumes either
use of the third party C# parser or creation of the special C#-light parser. Currently we use an
open source C# compiler called Mono distributed by the Ximian company (http://www.go-
mono.org/).
 The main goal of the C#-light to USL translation is to separate from the C#-light program’s data
provider and to store this data in the useful and universal representation.

http://www.go-mono.org/
http://www.go-mono.org/

	Description of the C#-light programs verification system
	The C#-light to USL translation component

