C# language verification

Translation of C#-light language’s
syntactic constructions into USL
expressions as the stage of C#-light
programs verification.

Ivan S. Zapreev, 2003

Institute of Informatics Systems
E-mail: cerndan@mail.ru

Project participants

Leader: Professor V.A. Nepomniaschy

Research assistants:

— Dr. I.S. Anyreev
— A.V. Promsky

PhD. students:

— I.S. Zapreev
— I.V. Dybranovsky

Institute of Informatics Systems,
Laboratory of Theory of Programming,
Lavrentieva 6, Novosibirsk, Russia, 630090

C# language

e (C# language was released by Microsoft in July 2000, as part of
its .NET Framework initiative.

® C# 1s a simple, modern, general-purpose, object-oriented
programming language.
® C# has much in common with C++ and Java

® The language, and implementations thereof support:
— strong type checking,
— array bounds checking,
— detection of attempts to use uninitialized variables,

— automatic garbage collection.

Hoare’'s axiomatic method

® [n 1969 Hoare introduced an axiomatic method of proving
programs correctness.

® The basic formulas of Hoare’s logic are constructs of the
form {P}S{Q}
— S 1s a program
— P, Q are assertions

® The meaning of the construct {P}S{Q} 1s as follows:
whenever (precondition) P holds before the execution of S
and S terminates, then (postcondition) Q holds after the
execution of S.

® Semantics of every simple statement 1s defined by axioms
scheme and every composite statement 1s described by
proof rules scheme.

A two layered verification

Definition of a “good” subset of C# language called C#-light
and creation of its operational semantics;

Definition of C#-kernel language which is a subset of C#-light.
C#-kernel have the same operational semantics as C#=light but it
1s possible to build a simple axiomatic semantics for it;

Definition of transformations from C#-light syntactical
constructs to C#-kernel syntactical constructs and proving their
correctness depending on the operational semantics;

Proving of consistency of the C#-kernel’s axiomatic semantics
regarding the C#-light’s operational semantics.

C#-light programs verification

Take an annotated program written in the C#-light;
Translate 1t into C#-kernel;

Create verification conditions with lazy computations depending
on the C#-kernel’s axiomatic semantics;

Refine verification conditions. I.e. resolve lazy computations via
partial program interpretation;

Prove verification conditions and analyse results.

Unified Semantic Language (USL)

® USL has been created as the result of generalization
of different approaches to programming languages’
formal semantics specification.

® The main constructs of USL are names and
eXpressions:

— Names are given by symbol sequences. There is a partial
function (called a state) that maps names to expressions.

— EXxpressions are built from names by operations. Any
expression has a value and can change the state.
Expressions are classified as: atomic, mathematical,
structural, semantic, logical, expressions with side
effects and comments.

USL EXxpressions

Atomic expressions are names;

Semantic expressions serve to change the expression semantics. They are built
by the operations & and *;

Mathematical expressions are built by:
— tuple [],

— set{},

— map < >,

— the plus and minus operations;

Structural expressions serve to give the order of sub expressions evaluation
and to structure expressions. They are:

— empty expression,

— parenthesized expression,
— sequential grouping,

— sequential execution,

— substitution,

— conditional expression,
— action;

USL EXxpressions

® | ogical expressions are built by propositional connectives:
— and, or, xor,
— imply,
— Iff,
— not,
— quantifiers exist, exists!, forall,
— €Q;
® Comments are built by the operation comment;

® Expressions with side effects serve to change a state. They are built by the
following operations:

— assignment assign,

— application (),

— the operation new and delete (changing a state domain),
— the operation return (returning the action value).

C#-light language

® The C#-light 1s a subset of the C# language. It
allows writing sequential programs and contains
all C# language constructs except:
— threads;
— attributes;
— unsafe code;
— destructors;
— lock and resource statements;
— checked and unchecked constructs.

C#-light’s operational semantics

e The C#-light language operational semantics definition requires an
abstract machine specification that in its-turn demands to determine
the Abstract Machine (AM) states and behavior. Each state 1s
defined in terms of a language entity and a language object.

e A language entity (variable, statement, class “definition, ...) is
defined by its type and a set of attributes. For instanceya “class
definition” entity of the C#-light has a class-declaration type,and
attribute-sections, modifiers, name, inherited-class, implemented-
Interfaces and members attributes.

® A language object 1s an instance of a language entity (a concrete
class definition, variable, ...). A value of a language object i1s
represented as a USL expression of the following kind:
<[name-type, t], [a,, &,], ..., [a,, €,]>

where t 1s a language entity type, a, ..., &, are attributc names,
e, ..., €, are corresponding attribute values.

C#-light’s operational semantics

® A state of AM is a USL state (names present language objects and
the state defines the values of these objects).

® The behavior of AM is specified by a USL action.

For the C#-light’s AM, action 1s called C#-object-evaluation it has
the following form:
set(&C#-object-evaluation,action(x,if(is-C#-object(X),
*concatenation(x(&name-type), &-action)(&x), &syntactical-error)))
— Check whether the input name x i1s a C#-light object.
— If not, the result is the syntactical-error expression.
— Otherwise, the action that evaluates C#-light objects of this type is executed.

® AM “understands” only the language of states that is why we have
to translate programs into states.

USL EXxpression example

The local variable declaration with itialization:

int1=0;
Is translated into the following USL expressi
<[name-type, local-variable-declaration],
type,int],
'declarators,

[<[name-type, local-variable-declarator],
[name, 1],
[initializer,0]>]]>]

The C#-kernel language

® (C#-kernel does not contain namespaces and using-directives

® All C#-light statements are eliminated, except:

local variable and constant declaration-statement;
expression-statement;

block;

labeled-statement;

1f-statement;

goto-statement.

® The following operators are not allowed 1n C#-kernel expressions:

logical operators || and &&,
conditional operator ?:,

all compound assignment operators (except when the left operand of the += or -=
operator is a normalized expression that is classified as an event access).

® A function member is allowed to be invoked only in its normal form.

C#-kernel’s axiomatic semantics

® In 1969 Hoare introduced an axiomatic method of proving
programs correct.

® Real execution is replaced by symbolic manipulations
over logical formulas. Not every construct can be
formalized correctly.

® (C#-light program is translated into C#-kernel and ¢‘bad™
constructs are replaced by equivalent C#-kernel
fragments.

e All constructs of C#-kernel can be axiomatically
formalized.

C#-light programs verification system

The developing C#-light programs verification
system consists of the following components:

*The “C#-light to USL” translation component

*The “C#-light to C#-kernel” transformation
component

*The verification condition generator

*The verification condition qualifier

*The prover

*The result analyzer

Verification process

User annotates the
C# light program

N

C# light to USL translation
Results analysis

C# light to C# kernel

) G ERET Verification condition
proMng

Verification condition
generation

Verification condition
refinement

The Verification system
components

— The correctness rules — The 'C# light to C# kermel'
generator component transformation component
[[
The c_:orre_ctness rules The 'C# light to USL'
specification component translation component
L
The proof component — The results analysis
component
[

The C#-light to USL translation
component

Mono C# pa— C# light program data gathering
Compiler component
]

C# light program USL expression creation
component

<<library>>
USL expressions
class library

<<library>> USL expressions
C#-light language's USL parser component
expressions class library

C#-light to C#-kernel Verification conditions
translation component generator component

Gather a C#-light program’s
data

How to get information about the C#-light program:
® Use a third party C# parser,

® Create a special C#-light parser.

Currently we use an open source C# compiler
called Mono distributed by the Ximian company

().

We are gomng to use Common Compiler
Infrastructure i1n the nearest future instead.

http://www.go-mono.org/

C#-light to USL, the future.

e Currently the main goal of the C#-light to USL translation 1s to
separate from the C#-light program’s data provider and to store this
data in the useful and universal internal representation (IR).

® In the future we propose to create a USL interpreter which will
take:

— A USL representation of the program,

— A corresponding programming language’s operational semanties
(C# 1n our case) defined via USL;

and thus will be able to interpret it.
This can be widely used in:

— Testing,

— Static analysis,

— Debuggers implementations,

— Runtime verification;

C#-light to USL, the main results

The following results were gathered while
development of the C#-light to USL translator:

® A common approach to translation of C#=light
programs 1nto USL expressions has been
developed;

® A USL classes library has been developed;
e A USL expression parser has been developed;

® A prototype of the “C#-light to USL” translation
component has been developed on the bases of
an open source C# compiler (Mono, Ximian).

	C# language verification
	Project participants
	C# language
	Hoare’s axiomatic method
	A two layered verification
	C#-light programs verification
	Unified Semantic Language (USL)
	USL Expressions
	USL Expressions
	C#-light language
	C#-light’s operational semantics
	C#-light’s operational semantics
	USL Expression example
	The C#-kernel language
	C#-kernel’s axiomatic semantics
	C#-light programs verification system
	Verification process
	The Verification system components
	The C#-light to USL translation component
	Gather a C#-light program’s data
	C#-light to USL, the future.
	C#-light to USL, the main results

