
C# language verificationC# language verification

Translation of C#-light language’s
syntactic constructions into USL

expressions as the stage of C#-light
programs verification.

Ivan S. Zapreev, 2003
Institute of Informatics Systems
E-mail: cerndan@mail.ru

Project participantsProject participants
Leader: Professor V.A. Nepomniaschy
Research assistants:

– Dr. I.S. Anyreev
– A.V. Promsky

PhD. students:
– I.S. Zapreev
– I.V. Dybranovsky

Institute of Informatics Systems,
Laboratory of Theory of Programming,
Lavrentieva 6, Novosibirsk, Russia, 630090

C# languageC# language

C# language was released by Microsoft in July 2000, as part of
its .NET Framework initiative.
C# is a simple, modern, general-purpose, object-oriented
programming language.
C# has much in common with C++ and Java
The language, and implementations thereof support:
– strong type checking,
– array bounds checking,
– detection of attempts to use uninitialized variables,
– automatic garbage collection.

HoareHoare’s ’s axiomatic methodaxiomatic method
In 1969 Hoare introduced an axiomatic method of proving
programs correctness.
The basic formulas of Hoare’s logic are constructs of the
form {P}S{Q}
– S is a program
– P, Q are assertions

The meaning of the construct {P}S{Q} is as follows:
whenever (precondition) P holds before the execution of S
and S terminates, then (postcondition) Q holds after the
execution of S.
Semantics of every simple statement is defined by axioms
scheme and every composite statement is described by
proof rules scheme.

A two layered verificationA two layered verification

1. Definition of a “good” subset of С# language called C#-light
and creation of its operational semantics;

2. Definition of C#-kernel language which is a subset of C#-light.
C#-kernel have the same operational semantics as C#-light but it
is possible to build a simple axiomatic semantics for it;

3. Definition of transformations from C#-light syntactical
constructs to C#-kernel syntactical constructs and proving their
correctness depending on the operational semantics;

4. Proving of consistency of the C#-kernel’s axiomatic semantics
regarding the C#-light’s operational semantics.

C#C#--light programs verificationlight programs verification

1. Take an annotated program written in the C#-light;
2. Translate it into C#-kernel;
3. Create verification conditions with lazy computations depending

on the C#-kernel’s axiomatic semantics;
4. Refine verification conditions. I.e. resolve lazy computations via

partial program interpretation;
5. Prove verification conditions and analyse results.

Unified Semantic Language (USLUnified Semantic Language (USL))
USL has been created as the result of generalization
of different approaches to programming languages’
formal semantics specification.
The main constructs of USL are names and
expressions:
– Names are given by symbol sequences. There is a partial

function (called a state) that maps names to expressions.
– Expressions are built from names by operations. Any

expression has a value and can change the state.
Expressions are classified as: atomic, mathematical,
structural, semantic, logical, expressions with side
effects and comments.

USL ExpressionsUSL Expressions
Atomic expressions are names;
Semantic expressions serve to change the expression semantics. They are built
by the operations & and *;
Mathematical expressions are built by:
– tuple [],
– set { },
– map < >,
– the plus and minus operations;

Structural expressions serve to give the order of sub expressions evaluation
and to structure expressions. They are:
– empty expression,
– parenthesized expression,
– sequential grouping,
– sequential execution,
– substitution,
– conditional expression,
– action;

USL ExpressionsUSL Expressions
Logical expressions are built by propositional connectives:
– and, or, xor,
– imply,
– iff,
– not,
– quantifiers exist, exists!, forall,
– eq;

Comments are built by the operation comment;
Expressions with side effects serve to change a state. They are built by the
following operations:
– assignment assign,
– application (),
– the operation new and delete (changing a state domain),
– the operation return (returning the action value).

C#C#--light languagelight language

The C#-light is a subset of the C# language. It
allows writing sequential programs and contains
all C# language constructs except:
– threads;
– attributes;
– unsafe code;
– destructors;
– lock and resource statements;
– checked and unchecked constructs.

C#C#--light’s light’s operational semanticsoperational semantics
The C#-light language operational semantics definition requires an
abstract machine specification that in its turn demands to determine
the Abstract Machine (AM) states and behavior. Each state is
defined in terms of a language entity and a language object.
A language entity (variable, statement, class definition, ...) is
defined by its type and a set of attributes. For instance, a “class
definition” entity of the C#-light has a class-declaration type and
attribute-sections, modifiers, name, inherited-class, implemented-
interfaces and members attributes.
A language object is an instance of a language entity (a concrete
class definition, variable, …). A value of a language object is
represented as a USL expression of the following kind:

<[name-type, t], [a1, e1], …, [an, en]>
where t is a language entity type, a1, …, an are attribute names,

e1, …, en are corresponding attribute values.

C#C#--light’s light’s operational semanticsoperational semantics
A state of AM is a USL state (names present language objects and
the state defines the values of these objects).
The behavior of AM is specified by a USL action.
For the C#-light’s AM, action is called C#-object-evaluation it has
the following form:

set(&C#-object-evaluation,action(x,if(is-C#-object(x),
*concatenation(x(&name-type), &-action)(&x), &syntactical-error)))

– Check whether the input name x is a C#-light object.
– If not, the result is the syntactical-error expression.
– Otherwise, the action that evaluates C#-light objects of this type is executed.

AM “understands” only the language of states that is why we have
to translate programs into states.

USL Expression exampleUSL Expression example

The local variable declaration with initialization:
int i = 0;

Is translated into the following USL expression:
<[name-type, local-variable-declaration],
[type,int],
[declarators,
[<[name-type, local-variable-declarator],

[name, i],
[initializer,0]>]]>]

The C#The C#--kernel languagekernel language
C#-kernel does not contain namespaces and using-directives
All C#-light statements are eliminated, except:
– local variable and constant declaration-statement;
– expression-statement;
– block;
– labeled-statement;
– if-statement;
– goto-statement.

The following operators are not allowed in C#-kernel expressions:
– logical operators || and &&,
– conditional operator ?:,
– all compound assignment operators (except when the left operand of the += or -=

operator is a normalized expression that is classified as an event access).
A function member is allowed to be invoked only in its normal form.

C#C#--kernelkernel’’s axiomatic semantics s axiomatic semantics

In 1969 Hoare introduced an axiomatic method of proving
programs correct.
Real execution is replaced by symbolic manipulations
over logical formulas. Not every construct can be
formalized correctly.
C#-light program is translated into C#-kernel and “bad”
constructs are replaced by equivalent C#-kernel
fragments.
All constructs of C#-kernel can be axiomatically
formalized.

C#C#--light programs verification systemlight programs verification system

The developing C#-light programs verification
system consists of the following components:
•The “C#-light to USL” translation component
•The “C#-light to C#-kernel” transformation
component
•The verification condition generator
•The verification condition qualifier
•The prover
•The result analyzer

Verification processVerification process

Verification condition
generation

Results analysis

Verification condition
proving

C# light to C# kernel
transformation

User annotates the
C# light program

C# light to USL translation

Verification condition
refinement

[else][need to add annotations]

The Verification system The Verification system
componentscomponents

The 'C# light to USL'
translation component

The 'C# light to C# kernel'
transformation component

The correctness rules
generator component

The correctness rules
specification component

The proof component The results analysis
component

The C#The C#--light to USL translation light to USL translation
componentcomponent

Mono C#
Compiler

C# light program data gathering
component

USL expressions
class library

<<library>>

C# l ight program USL expression creat ion
component

C#-light language's USL
expressions class library

<<library>>

C#-light to C#-kernel
translation component

Verification conditions
generator component

USL expressions
parser component

Gather a C#Gather a C#--light program’s light program’s
datadata

How to get information about the C#-light program:
Use a third party C# parser,
Create a special C#-light parser.

Currently we use an open source C# compiler
called Mono distributed by the Ximian company
(http://www.go-mono.org/).

We are going to use Common Compiler
Infrastructure in the nearest future instead.

http://www.go-mono.org/

C#C#--light to USL, the future.light to USL, the future.
Currently the main goal of the C#-light to USL translation is to
separate from the C#-light program’s data provider and to store this
data in the useful and universal internal representation (IR).
In the future we propose to create a USL interpreter which will
take:
– A USL representation of the program,
– A corresponding programming language’s operational semantics

(C# in our case) defined via USL;
and thus will be able to interpret it.
This can be widely used in:
– Testing,
– Static analysis,
– Debuggers implementations,
– Runtime verification;

C#C#--light to USL, the main resultslight to USL, the main results

The following results were gathered while
development of the C#-light to USL translator:
A common approach to translation of C#-light
programs into USL expressions has been
developed;
A USL classes library has been developed;
A USL expression parser has been developed;
A prototype of the “C#-light to USL” translation
component has been developed on the bases of
an open source C# compiler (Mono, Ximian).

	C# language verification
	Project participants
	C# language
	Hoare’s axiomatic method
	A two layered verification
	C#-light programs verification
	Unified Semantic Language (USL)
	USL Expressions
	USL Expressions
	C#-light language
	C#-light’s operational semantics
	C#-light’s operational semantics
	USL Expression example
	The C#-kernel language
	C#-kernel’s axiomatic semantics
	C#-light programs verification system
	Verification process
	The Verification system components
	The C#-light to USL translation component
	Gather a C#-light program’s data
	C#-light to USL, the future.
	C#-light to USL, the main results

