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1 Introduction

Model checking is an automated technique that establishes whether certain qualitative prop-
erties such as deadlock-freedom or request-response requirements (“does a request always
lead to a response?”) hold in a model of the system under consideration. Such mod-
els are typically transition systems that specify how the system can evolve during execu-
tion. Properties are usually expressed in temporal extensions of propositional logic, such as
CTL [CES86].

In the last years adapting model checking to probabilistic systems has been a rather ac-
tive research field. This has resulted in efficient algorithms for model-checking DTMCs
and CTMCs, as well as Markov decision processes (MDPs), thatare supported by several
tools nowadays such as E⊢MC2 [HKMKS00], PRISM [HKNP06], GreatSPN [BDH00],
VESTA [SVA05], Ymer [You05b], and the APNN Toolbox [BFKT03]. Various case studies
have proven the usefulness of these model checkers. Popularlogics are Probabilistic CTL
(PCTL) [HJ94] and Continuous Stochastic Logic (CSL) [BHHK03].

Although these model checkers are able to handle a large set of measures of interest, the
reward-based measures have received scant attention so far. Markov Reward Model Checker
(MRMC) allowes for verification of Markovrewardmodels (MRMs), in particular DMRMs
and CMRMs. These are the underlying semantic models of various high-level performance
modelling formalisms, such as reward extensions of stochastic process algebras, stochastic
reward nets, and so on.

MRMC [KZH+09], see also [JKO+07, KZ09], supports the following types of probabilis-
tic models:

• Discrete time Markov chains (DTMCs)

• Continuous time Markov chains (CTMCs)

• Discrete time Markov Reward models (DMRMs)

• Continuous time Markov Reward models (CMRMs)

• Continuous time Markov decision processes (CTMDPIs1)

Hence, MRMC supportsProbabilistic Computation Tree Logic (PCTL)and Continuous
Stochastic Logic (CSL)for property specification as well as their reward extensions Proba-
bilistic Reward Computation Tree Logic (PRCTL)andContinuous Stochastic Reward Logic
(CSRL). Table1.1 provides correspondence between the before-mentioned logics and the
supported models.

For PCTL the realized algorithms are mostly discussed by Hansson and Jonsson in [HJ94].
The exception is a long-run operator which is handled similar to the steady-state operator of

1Here, I stands for the internal non-determinism.
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DTMC CTMC DMRM CMRM CTMDPI
PCTL +
CSL + + a

PRCTL +
CSRL +

aThere is no support for the steady-state and unbounded-timereachability properties.

Table 1.1: The supported models and the corresponding logics

CSL. The supported algorithms for PRCTL have been describedby Andovaet al. [AHK03].
Model-checking techniques for CSL (on CTMCs) are derived from [BHHK03] and for its
reward extension CSRL from [CKKP05] (see also [BHHK00, HCH+02]). For the latter one
we have implemented two algorithms for time- and reward- bounded until formulae. One is
based on discretization [TV00] and another on uniformization and path truncation [QS96].
The algorithms for PRCTL and CSRL support both state and impulse rewards. Model-
checking of CSL (on CTMDPIs) implements procedures described in [BHKH05, BHH+06].

It is important to note that the model-checking procedures integrated in MRMC were com-
plemented with the following extensions that are aimed at improving the tool’s performance
and accuracy:

Steady-state (long-run) operator of CSL (PCTL). For the operatorS⊲⊳ b (Ψ) the al-
gorithmic improvement lies with searching only for BSCCs that can containΨ states, as
opposed to searching for all BSCCs. The modification that wasdone to the model-checking
algorithms is straightforward and therefore we do not explain it in further details.

Unbounded-until operator of CSL (PCTL). For model checkingP⊲⊳ b (Φ U Ψ), we
first exclude states, using graph reachability analysis, from whichΨ states are always or
never reachable. Then the model checking procedure for the remaining states is carried out
as usual. All techniques required for this improvement are described in [CG04].

Time-bounded until operator of CSL. We have implemented a uniformization pro-
cedure [BHHK03] with a precise on-the-fly steady-state detection which is discussed in
[KZ05, KZ06]. Similar to unbounded-until operator, the technique of [CG04] is employed to
detect and remove states from which theΨ states are never reached. Also we employ ideas,
described in [KKNP01], that allow to compute the reachability probabilities forall initial
states at once.

Bisimulation minimization. The bisimulation minimization algorithms have been real-
ized for PCTL, CSL, PRCTL and CSRL, in the latter two cases without impulse rewards.
For more details consider [KKZJ07].

Model checking by discrete event simulation. We developed and implemented al-
gorithms for model-checking CSL properties by simulation of finite-state CTMCs. Our
approach is based on Monte Carlo simulation and derivation of confidence intervals. We

3



provide statistical algorithms for model checking the mostinteresting CSL operators, such
as steady-state, unbounded-reachability, and time-interval reachability operators. For more
details we refer to [Zap08, KZ09].

The remainder of the manual is organized as follows. In Chapter 2 we discuss platforms
supported by MRMC, the implementation language and licensing. Further, we illustrate
the tool usage and introduce a snapshot of MRMC architecturevia simple examples. The
next chapter, Chapter3, explains the installing process of the tool. The input-fileformats of
MRMC are discussed in Chapter4. Chapter5 is devoted to command-line options provided
by the tool, while in Chapter6 a list of all available MRMC commands and run-time options
is given. The semantics of all supported logics are introduced in Chapter7 and afterwords
information about model checking by means of simulation is given in Chapter8. Chapter9
speaks about MRMC’s test suite, while Chapter10concludes with the list of groups involved
in the MRMC development and the corresponding contact information.

4



2 MRMC tool description

MRMC [KZH+09] is a command-line tool that supports an easy input format and is real-
ized in the C programming language. The latter allows the tool to be small and fast due
to compiler-based optimisations and smart memory management within the implementa-
tion [JKO+07]. Also, MRMC uses simple but high-performance data structures, such as: a
slightly modified version of the well-known compressed-row, compressed-column represen-
tation of probability (rate) matrices, and bit vectors for representing sets of states.

Since MRMC v1.2.2 the tool supports all major platforms, namely Microsoft Windows,
Linux and Mac OS X. The tool is distributed under the GNU General Public License (GPL)
[PtFSF07a] and is available for free download at:

http://www.mrmc-tool.org/
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Figure 2.1: Tool architecture of MRMC

A sketch of the MRMC tool architecture is provided in Figure2.1. Below we refer to it
for illustration purposes when giving examples of MRMC inputs, outputs and functionality.
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Figure 2.2: The dice game: DMRM model

Example 1 Consider a dice with only four wedges that have numbers1, 2, 3 and4 imprinted
on them. Let the dice be biased in such a way that we get the before-mentioned outcomes
with probabilities0.4 0.3, 0.2 and0.1 respectively. One can now play a simple game where
the game round consists of continuously tossing the dice until winning, if the outcome is4
and the accumulated outcome is from5 to 50, or losing, if the outcome is1.

A natural question rises: Is the probability to win this game, e.g. within100 tosses, larger
than0.5? The answer to such a question can be given if we represent this game as a DMRM
model and reformulate the question in terms of the PRCTL logic.

The required DMRM is provided in Figure2.2. Here we have five states where state1
represents the moment at which the dice is tossed and states from 2 to 5 correspond to the
dice outcomes from1 to 4. These outcomes are transformed into state rewards and placed
next to the states in the square braces. Thelossandgoalstates are marked by labels enclosed
in the curly braces. Thegoal label corresponds to the outcome4 and in order to win, by
reaching this state, the accumulated outcome has to be within 5 and50.

The measure-of-interest can be formulated as:P>0.5

(
¬loss U

[0,199]
[5,50] goal

)
. The given

property asserts that the probability to reach thegoal state, without visiting theloss state
within 199 time steps, and the accumulated reward being from5 to 50, is larger than0.5.
Notice that we have the upper time bound199 that in the model corresponds to100 dice
tosses.

On the start up, MRMC accepts several command-line options,e.g., that specify the model
(CTMC, DTMC, etc.), and expects five input files: a.tra – file describing the probability
or rate matrix of a DTMC, CTMC or an MRM, a.lab – file indicating the state labelling
with atomic propositions, a.ctmdpi – file describing the rate matrix and the transition
labelling of a CTMDPI, a.rew – file specifying the state-reward structure of an MRM,
and a.rewi – file specifying the impulse-reward structure of an MRM. Forall supported
model types either the.tra or .ctmdpi and.lab files are compulsory, whereas.rew
and.rewi files are used only for specifying reward models.

Example 2 The DMRM model of Example1 can be seen as a superposition of three parts:
(i) the DTMC given by state-transitions and corresponding distributions, (ii) the labelling
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function that maps sets of labels to the DTMC states, and(iii) the state-reward function
that maps reward values to the DTMC states. In order to be usedwith MRMC, all these
three parts have to be transformed into the MRMC input files. Such a translation is given in
Table2.1.

Thegame.tra file contains an intuitive text-based representation of theDTMC, i.e. its
state transitions and corresponding probabilities. Thegame.lab file contains label decla-
rations and maps sets of labels to the states of DTMC. Similarly thegame.rew file contains
mapping of the state rewards to the model states.

In order to start MRMC with the given input files the followingcommand should be ex-
ecuted in a shell environment such ascsh, bashon Linux (Mac OS X), orDos command
prompton Microsoft Windows:

MRMC/bin> mrmc dmrm game.tra game.lab game.rewi

When executed, this command starts MRMC by triggering several of its components, see
Figure 2.1. First “Options analyzer” parses the command-line arguments, setting up the
DMRM model as the current one in the “Runtime settings” componentand invoking “Input-
file reader” for processing the filesgame.tra, game.laband game.rewi. At this stage nec-
essary data structures for storing the probability matrix are provided by “Internal-data
storage”, labelling and state rewards, which then become accessible through “Runtime set-
tings”. Once MRMC is started it produces the following output:

--------------------------------------------------- ----------------
| Markov Reward Model Checker |
| MRMC version 1.4.1 |
| Copyright (C) RWTH-Aachen, 2006-2009. |
| Copyright (C) The University of Twente, 2004-2008. |
| Authors: |
| Ivan S. Zapreev (since 2004), Christina Jansen (2007-2008 ), |
| David N. Jansen (since 2007), E. Moritz Hahn (2007-2008), |
| Sven Johr (2006-2007), Tim Kemna (2005-2006), |
| Maneesh Khattri (2004-2005) |
| MRMC is distributed under the GPL conditions |
| (GPL stands for GNU General Public License) |
| The product comes with ABSOLUTELY NO WARRANTY. |
| This is a free software, and you are welcome to redistribute it. |

--------------------------------------------------- ----------------
Logic = PRCTL
Loading the ’simple_dmrm_dice.tra’ file, please wait.
States=5, Transitions=8
Loading the ’simple_dmrm_dice.lab’ file, please wait.
Loading the ’simple_dmrm_dice.rew’ file, please wait.
The Occupied Space is 992 Bytes.
Type ’help’ to get help.
>>

where, first the MRMC logo is printed, then some general information about the accepted
model and finally the MRMC shell invitation sign>>. After that the tool is up and running,
ready to accept user commands.

Once started, MRMC provides a shell-like environment (a command prompt) where the
user can specify the tool run-time options, such as a use of certain algorithms, and the prop-
erties that have to be verified. For every verification problem the tool outputs a set of states
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that satisfy the given property and, if applicable, the listof probabilities. Note that the com-
plete list of MRMC command-line options and command-promptcommands can be found
in Chapter6.

game.tra game.lab game.rew
STATES 5 #DECLARATION 2 1
TRANSITIONS 8 loss goal 3 2
1 2 0.4 #END 4 3
1 3 0.3 2 loss 5 4
1 4 0.2 5 goal
1 5 0.1
2 1 1.0
3 1 1.0
4 1 1.0
5 1 1.0

Table 2.1: The dice game: MRMC input files

Example 3 Extending Example2, we can answer to the model checking problem of Exam-
ple1, by executing the following command in the MRMC command prompt:

>>P{>0.5}[ !loss U[0,199][5,50] goal]
$RESULT: ( 0.0647999, 0.0000000, 0.0959998, 0.1199998, 0. 1199997 )
$STATE: { }
The Total Elapsed Model-Checking Time is 45 milli sec(s).
>>

By doing so we invoke the “Command-prompt interpreter” component, cf. Figure2.1, that
processes all commands of the MRMC shell. This component, using “Runtime settings” de-
termines which model-checking engine is needed, in this case it is “PRCTL model checking”,
and then invokes it. As a result, we get two outputs: a probability vector$RESULT, and a set
of states$STATE. The former corresponds to the list of probabilities to satisfy the formula
¬loss U

[0,199]
[5,50] goal when starting in the first, second, etc. states. The latter one is the set of

states in which the formulaP>0.5

(
¬loss U

[0,199]
[5,50] goal

)
is satisfied.

Since, when playing the dice game, we always start in state1, i.e. we first toss the dice,
from the vector$RESULTwe can see that the probability to win the game within100 dice
tosses is just0.0647999 and thus indeed1 is not in the set$STATE.

Since we already have a good idea of how MRMC works, we proceedwith concrete
information on the tool installation process. The dice example from above will be referenced
in the upcoming chapters to illustrate the tool functionality.
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3 Building MRMC

This chapter is devoted to the installing process of MRMC andall related components.
MRMC can be freely downloaded from:

http://www.mrmc-tool.org/

Further, we first explain how to build MRMC on the supported platforms. After that we
proceed with a section on getting and configuring the optional MRMC test suite, which is
useful for internal, functional and performance testing ofthe tool.

3.1 Building MRMC from source code

To compile MRMC from sources GNU Make as well as GCC is needed.Additionally, com-
pilation under Windows requires Cygwin.

• http://gcc.gnu.org/

• http://www.cygwin.com/

3.1.1 Getting & Installing GSL

Since MRMC v1.3, the tool requires the GNU Scientific Library(GSL), a collection of
numerical routines for scientific computing. The current version of GSL is available at:

ftp://ftp.gnu.org/pub/gnu/gsl

GSL follows the standard GNU installation procedure. Briefinstalling instructions can be
found here, for further information on this topic see [PtFSF07b].

Note that, in order to install GSL on Windows you are first required to install Cygwin and
then to perform GSL installation procedure using the Cygwinshell. For more details see
Section3.1.3.

First, unpack the GSL distribution file into the location of your choice, enter that directory
and prepare the Makefiles by using theconfigurecommand. Afterwords runmaketo compile
andmake installto install the library. On most systems the latter will require root privileges.

$ tar -xf gsl-1.9.tar.gz
$ cd gsl-1.9
$ ./configure
$ make
$ sudo make install

Further we assume that GSL is properly installed on your system.
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3.1.2 Linux

To build MRMC on Linux unpack the distribution into the location of your choice. We define
MRMC_HOME_DIRto be the absolute name of the MRMC distribution folder. After MRMC
is unpacked, enter this directory and runmake all.

$ unzip mrmc_src_v1.3.zip
$ cd MRMC_HOME_DIR
$ make all

After that you will find the MRMC executable in the folderMRMC_HOME_DIR/bin.
In order to clean up distribution, i.e. to remove all object files and pre-compiled binaries

run make clean.

3.1.3 Windows

To build MRMC on Windows first download and install Cygwin

http://www.cygwin.com

Make sure that ’gcc’, ’make’, ’yacc’ (’bison’) and ’lex’ (’flex’) modules are included. Ensure
that the absolute name of the MRMC distribution folder does not contain spaces.

In the next step install the GNU Scientific Library (GSL) as described in Section3.1.1and
then proceed with the installation steps specified in Section 3.1.2. Ensure that all commands
are executed within the Cygwin shell.

3.1.4 Mac OS X

To build MRMC on Mac OS use the instructions of Section3.1.2.

3.1.5 Getting & Using Splint

Some source files are annotated for the static checker splint(seehttp://www.splint.org).
Splint checks a. o. for null pointer assignments, memory leaks, and safety of#define
macros. Splint can be downloaded from its homepage and installed according to the instruc-
tions found there.

Splint can be used as follows:

Check a single source file: To check, e. g., bitset.c (currently the only annotated file):

$ cd MRMC_HOME_DIR/obj
$ make lint-bitset

One has to runmake lint- filenamein the directoryMRMC_HOME_DIR/objin-
dependently from the directory where the source file is located.

Check all source files: Currently, this will incur a lot of error messages, as not yetall
sources have been annotated.

10
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$ cd MRMC_HOME_DIR
$ make lint

Check the test suite sources: Internal tests (see below) also have source files. As the
test suite is not packaged together with the source installation, there is an independent
way to check the test suite sources:

$ cd MRMC_HOME_DIR/test
$ ./test_all.sh -lint -internal

will run splint on all annotated internal tests, compile thesources and run the internal
tests.

3.2 Getting & Installing Test Suite

The test-suite allows to perform internal, functional and performance testing of MRMC. It is
not distributed with the MRMC sources, but it can be freely downloaded from:

http://www.mrmc-tool.org/

After downloading theMRMCtest v1.3.zip file, unpack it in the MRMC folder. As
a result a directoryMRMCHOMEDIR/MRMCtest v1.3/ will be created. Further, for
brevity, we assume that you rename it intoMRMCHOMEDIR/test/ .

3.2.1 Configuring tests

The main configuration parameters of the MRMC test-suite canbe set in the

MRMCHOMEDIR/test/settings.cfg

configuration script. These parameters are subdivided intotwo groups:

General settings

• MRMCHOMEDIR - The absolute name of the MRMC distribution directory.

• MRMC- The location of the MRMC binary. This setting does not need to be changed if
MRMCHOMEDIR is set correctly. Note that, when running MRMC on Windows, the
binary name should be set tomrmc.exe .

• VALGRINGHOME- The absolute path to thevalgrind executable [ABFH+08].
It is only required if tests are run under the-valgrind option. Note that in this
case MRMC should be first recompiled with the-O0 -ggdb -g options, which are
available inMRMCHOMEDIR/makefile.def .

• VALGRINDLOGFILES DIR - The absolute name of the folder for storinglog filed
produced byvalgrind .

• EXTRAVALGRINDPARAM- Extra options forvalgrind .
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Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under Windows orMac OS X.

• PRISM - The absolute path of the PRISM [KNP02] command line executable. This
setting is required for generating performance-test models.

• TMPDIR- This setting should point to a local directory, which will be used for storing
generated models.

• YMER- The absolute path of the Ymer [You05b] command line executable2.

• VASTAJAR - The absolute path of the VESTA [SVA04] jar file2.

• NUMBEROF PERFORMANCEREPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed-time” statistics is col-
lected. At the same time the functional testing and the memory-usage statistics are
collected only for thelumping sub suite.

• MILLISECONDS- The time units of the “elapsed-time” plots.

• KILOBYTES- The data units of the “memory-usage” plots.

• CONFUNIT- The data units of the “confidence” plots2.

• PERFORMANCETEST TIMEOUTSECS- The timeout (in seconds) for each perfor-
mance test invocation.

For more information on the MRMC test suite, we refer to Chapter9 and also to the test-suite
manual:MRMC_HOME_DIR/test/TS_Manual.pdf .

2This setting is required only for thesimulation sub suite.
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4 MRMC’s Input Files

As already mentioned in Chapter2 MRMC expects five input files: a.tra – file describing
the probability or rate matrix of a DTMC, CTMC or an MRM, a.lab – file indicating the
state labeling with atomic propositions, a.ctmdpi – file describing the rate matrix and the
transition labeling of a CTMDPI, a.rew – file specifying the state-reward structure, and a
.rewi – file specifying the impulse-reward structure. For all supported model types either
the.tra or the.ctmdpi and.lab files are compulsory, whereas.rew and.rewi files
are used only for specifying reward models.

Here we would like to give a formal definition of the structurethe input files should meet.
Please note, thatMRMC does not check if the input is in a proper format and thus
may show malicious behavior in case of a wrong input. For examples of MRMC’s input
files see Table2.1 of Chapter2. Additionally, examples for CTMDPIs can be found in
AppendixA.

4.1 The .tra File Format

The.tra file contains the rate (probability) matrix:

File structure:

Tra_File = Header Body
Header = ’STATES’ <number of states> \n

’TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <rate/probability> \n

Body
| <from state> <to state> <rate/probability> \n

The header defines the number of states and transitions in thesystem. The body contains
transitions in the format:

<from state> <to state> <rate/probability>

Note that, “from state” and “to state” should be given as natural numbers, the rates/probabil-
ities as real numbers. State indexes start with1 and transitions must be given in ascending
order of first row and then column index.

4.2 The .lab File Format

The.lab file contains the labeling of states with atomic propositions.
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File structure:

Lab_File = Declaration Body
Declaration = ’#DECLARATION’ \n

Atomic_Prop_List \n
’#END’ \n

Body = <state> Atomic_Prop_List \n Body
| <state> Atomic_Prop_List \n

Atomic_Prop_List = <atomic proposition> Atomic_Prop_Lis t
| <atomic proposition>

In the declaration section all needed atomic propositions must be defined. We allow quite
complicated atomic propositions, namely the ones that fit the following regular expression:

<atomic proposition> = {let}{alnum} *
let = [_a-zA-Z]
alnum = [_a-zA-Z0-9<>_ˆ * +-=]

The propositions are assigned to states in the following manner:

<state> Atomic_Prop_List

4.3 The .ctmdpi File Format

The.ctmdpi file contains the rate matrix and additionally the transition labeling to distin-
guish between different non-deterministic choices. The file format for the transition descrip-
tions are given below.

File structure:

Ctmdpi_File = Header Body_Int_Nondet
Header = ’STATES’ <number of states> \n

’#DECLARATION’ \n
Atomic_Prop_List \n

’#END’ \n
Body_Int_Nondet = <from state> <label> \n

* <to state> <rate> \n
{ * <to state> <rate> } \n
Body_Int_Nondet

| <from state> <label> \n

* <to state> <rate> \n
{ * <to state> <rate> } \n

The header defines the number of states the MDP contains as well as all needed transition
labels, which are used to label the non-deterministic decisions.

The body contains the transitions and transition labels, where “from state” is the state the
the selection starts from and “label” is the external choicethat was made. After this line, a
number of lines follow, which list the states “to state” one can go to with rate “rate”.
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Note that, “from state” and “to state” should be given as natural numbers, the rates/proba-
bilities as real numbers. State indexes start with1 and transitions must be given in ascending
order of first row and then column index.

4.4 The .rew File Format

The.rew file contains the state-reward definitions.

File structure:

Rew_File = Body
Body = <state> <reward> \n Body

| <state> <reward> \n

Note that, only natural reward values are allowed, therefore any rational rewards must (and
can) be transferred into natural numbers first.

4.5 The .rewi File Format

The.rewi file contains the impulse-reward definitions.

File structure:

Rewi_File = Header Body
Header = ’TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <reward> \n Body

| <from state> <to state> <reward> \n

In the header the number of transitions is given, the body contains reward to transition
assignments in the format:

<from state> <to state> <reward>

Note that, “from state” and “to state” should be given as natural numbers. Furthermore, like
for the.rew file only natural reward values are allowed.

4.6 Getting MRMC models

Specifying a whole model in the formats explained above is not very intuitive especially
for large systems. Therefore in this section we introduce two tools – namely PRISM and
PEPA – that offer a clearly defined language for designing models. Both of them feature the
automatic generation of MRMC input files.
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4.6.1 PRISM

PRISM [KNP08b] stands for Probabilistic Symbolic Model Checker and is being developed
at the University of Birmingham, United Kingdom, for the analysis of probabilistic systems.

MRMC models can be generated from PRISM models starting fromthe tool version 3.0.
PRISM can be downloaded from:

http://www.prismmodelchecker.org/download.php

The model-generation options of PRISM are listed here and can also be obtained by running
prism -help :

• –exportmrmc - Use MRMC format when exporting matrices/vectors/labels.

• –exportlabels<file> - Export the list of labels and satisfying states to a.lab -file.

• –exporttrans<file> - Export the transition matrix to a.tra -file.

• –exportstaterewards<file> - Export the state rewards vector to a.rew -file.

• –exporttransrewards<file> - Export the transition rewards matrix to a.rewi -file.

Example 4 Consider Example2 of Chapter2. The DMRM model given in Figure2.2 can
be specified as the following PRISM model:

--------------------------- File: game.pm ------------ -------------------

probabilistic

module Dice

dice_state : [1..5] init 1;

[] dice_state=1 -> 0.4:(dice_state’=2) + 0.3:(dice_state ’=3)
+ 0.2:(dice_state’=4) + 0.1:(dice_state’=5);
[] dice_state=2 -> 1.0:(dice_state’=1);
[] dice_state=3 -> 1.0:(dice_state’=1);
[] dice_state=4 -> 1.0:(dice_state’=1);
[] dice_state=5 -> 1.0:(dice_state’=1);

endmodule

rewards
dice_state=2 : 1;
dice_state=3 : 2;
dice_state=4 : 3;
dice_state=5 : 4;
endrewards

--------------------------------------------------- ----------------------
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--------------------------- File: game.pctl ---------- -------------------

label "loss" = dice_state=2;
label "goal" = dice_state=5;

--------------------------------------------------- ----------------------

In the filegame.pm the DMRM model is specified, whereas the filegame.pctl contains
only the state labellings.

To generate the MRMC model with PRISM, run the following command,

$ prism game.pm game.pctl -exportmrmc -exportlabels
game.lab -exporttrans game.tra -exportstaterewards game .rew

which produces the.tra , .lab and .rew input files shown in Table2.1 of Chapter2.
These files can be immediately consumed by MRMC.

For more information on generating MRMC models using PRISM see [KNP08b].

4.6.2 Performance Evaluation Process Algebra (PEPA)

Performance Evaluation Process Algebra (PEPA) [Hil96] is an algebraic process-oriented
language for modeling concurrent systems. The process algebra is being mainly developed
in Laboratory for Foundations of Computer Science, University of Edinburgh, United King-
dom. Performance of a PEPA model can be evaluated by derivingand analyzing the under-
lying CTMC. PEPA modelers are provided with the PEPA Workbench [TG06],

http://www.dcs.ed.ac.uk/pepa/tools/

an Eclipse-platform [Fou07] application for managing the models. One of the PEPA Work-
bench features is an Eclipse wizard for exporting PEPA models into the MRMC input-file
formats.
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5 Running MRMC

In order to start MRMC open a shell environment such as csh or bash on Linux and Mac OS
X, or Dos command prompt on Microsoft Windows and switch toMRMCHOMEDIR.

5.1 Command line options

Starting MRMC without parameters

• for Linux/Max OS: $ ./bin/mrmc

• for Windows: $ ./bin/mrmc.exe

will yield the following output:

ERROR: The <model> parameter is undefined.
Usage: mrmc <model> <options> <.tra file> <.ctmdpi file> <. lab file> <.rew file>
<.rewi file>

<model> - could be one of {ctmc, dtmc, dmrm, cmrm, ctmdpi}.
<options> - could be one of {-ilump, -flump}, optional.
<.tra file> - is the file with the matrix of transitions

(for DMRM/CMRM, DTMC/CTMC).
<.ctmdpi file> - is the file with the transition matrix and tr ansition labels

(for CTMDPI).
<.lab file> - contains labeling.
<.rew file> - contains state rewards (for DMRM/CMRM).
<.rewi file> - contains impulse rewards (for CMRM, optional ).

Note: In the ’.tra’ and ’.ctmdpi’ file transitions should be ordered by rows and columns!

The model -parameter should be set to one of the supported models, namely CTMC,
DTMC, CMRM, DMRM and CTMDPI. Remember that the latter model is a CTMDP with
internal non-determinism, see AppendixA.

Options-ilump and-flump enable formula- independent and dependent lumping cor-
respondingly. For more information on lumping, please consider reading [KKZJ07].

We expect users to provide MRMC with the input files that meet the formats specified
in Chapter4, for illustration see Example2 on page6. Note that, the order of input files,
options and other parameters does not have to be strict.

A complete list of all MRMC runtime commands, sorted by theiraffiliation to different
model checking aspects, can be found in the next chapter.
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6 MRMC run-time Commands

Once started, MRMC provides a shell-like environment (a command prompt) where the user
can use the tool run-time commands to set for example the use of certain algorithms, or
specify the properties that have to be verified. Further we will list and discuss MRMC’s
command-prompt commands sorted by their affiliation to the different aspects of model
checking.

6.1 Basic Commands

6.1.1 help

When typinghelp in MRMC’s command prompt, information on general commands is
displayed:

quit - exit the program.
help HT - display a help info on a given topic.
print - print run-time settings.
print tree - print the formula tree with the results and suppl ementary

information.
$RESULT[N] - access the computed results of U, X, L, S, E, C, Y o perators

by a state index.
$STATE[N] - access the state-formula satisfiability set by a state

index.
set * - Where * is one of the following:
print L - Turn on/off most of the resulting output, see

’$RESULT[I]’ and ’$STATE[I]’ commands.
simulation L - Turn on/off the simulation engine.

Here:
HT is one of {logic, simulation, rewards, common}.
L is one of {on, off}.
N is a natural number.

First we are going to explain the basic commands listed in this help output, the more
involved ones are covered in the subsequent sections.

quit – Exits the program.

help HT – For some terms a specialized help is available. See the description provided
for help logic , help simulation , help rewards andhelp common below.
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print tree – Prints the tree of the last model-checked formula with all intermediate
results.

Note: The next two commands provide different output in case of using the discrete event
simulation engine. For more details we refer to Section8.

$RESULT[N] – Allows to access the probability of satisfying the model-checked
formula in stateN.

$STATE[N] – Displays whether stateNsatisfies the model-checked formula, i. e. for a
state fulfilling the formula the result isTRUE, otherwiseFALSE.

6.1.2 help logic

The commandhelp logic prints the formal syntax, given inExtended Backus-Naur Form
(EBNF), of the logic formulae accepted by MRMC. The output depends on the value of the
logic parameter with which MRMC was invoked. Figures6.1 through6.4 show outputs
for all available logics. These logics allow to specify model-checking properties, as it is done
in Example3 on page8. Additional information on the logic semantics and examples are
provided in Chapter7.

6.1.3 help simulation

Thehelp simulation command provides the user with all options related to MRMC’s
simulation engine:

set * - Where * is one of the following:
sim_type ST - Sets the simulation type, \ie{} either

do simulation for all initial states
or just one.

initial_state N - Sets the initial state for the simulation
type ST == one.

sim_method_steady MS - Sets the simulation mode for the
steady-state (long-run) operator.

reg_method_steady RM - Sets the mode for the regeneration me thod when
model checking the steady-state operator.

gen_conf R - The confidence level for simulation.
indiff_width R - The indifference-region width.
max_sample_size N - The maximum sample size.
min_sample_size N - The minimum sample size.
sample_size_step N - The sample-size increase step.
sample_size_step_type SS - Sets the sample-size step type.
sim_method_disc RNG - The random-number generator for a

discrete distribution.
sim_method_exp RNG - The random-number generator for an

exponential distribution
(time-interval until, CSL).

For the simulation of unbounded until and the pure simulatio n of
steady-state (long-run) operator:

max_sim_depth N - The maximum simulation depth.
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CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| ( SFL )
| P{ OP R }[ PFL ]
| L{ OP R }[ SFL ]

PFL = X SFL
| SFL U SFL
| SFL U[ N, N ] SFL

Figure 6.1: PCTL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| ( SFL )
| P{ OP R }[ PFL ]
| E [ R, R] [ SFL ]
| E [N][ R, R] [ SFL ]
| C [N][ R, R] [ SFL ]
| Y [N][ R, R] [ SFL ]

PFL = X SFL
| SFL U SFL
| SFL U[ N, N][ R, R]

SFL

Figure 6.2: PRCTL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| ( SFL )
| P{ OP R }[ PFL ]
| S{ OP R }[ SFL ]

PFL = X SFL
| SFL U SFL
| X[ R, R ] SFL
| SFL U[ R, R ] SFL

Figure 6.3: CSL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| ( SFL )
| P{ OP R }[ PFL ]
| S{ OP R }[ SFL ]

PFL = X SFL
| SFL U SFL
| X[ R, R ] SFL
| SFL U[ R, R ] SFL
| X [R, R][R, R] SFL
| SFL U[ R, R][ R, R]

SFL

Figure 6.4: CSRL formulae
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min_sim_depth N - The minimum simulation depth.
sim_depth_step N - The simulation-depth increase step.
bscc_dim_multiplier N - The BSCC dimension multiplier for t he

sample-based regeneration state choice.
Here:

RNG is one of {app_crypt, ciardo, prism, ymer, gsl_ranlux,
gsl_lfg, gsl_taus}.

ST is one of {one, all}.
SS is one of {auto, manual}.
MS is one of {pure, hybrid}.
RM is one of {pure_reg, heuristic}.
R is a real value.
N is a natural number.

For more information on the simulation options read Section6.2.3. For details on the avail-
ableRandom Number Generators (RNGs)read Chapter8.

6.1.4 help rewards

The commandhelp rewards yields the following output:

set * - Where * is one of the following:
method_until_rewards MU - Method for time-reward-bounded until

formula.
w R - The probability threshold for

uniformization
Qureshi-Sanders.

d R - The discretization factor for
discretization Tijms-Veldman.

Here:
MU is one of { uniformization_sericola,

uniformization_qureshi_sanders,
discretization_tijms_veldman }.

R is a real value.

For more information on reward options listed above, we refer to Section6.2.4.

6.1.5 help common

The help common command provides the user with information concerning options, re-
lated to all model-checking procedures and numerical methods. For detailed information on
these options, see Sections6.2.1and6.2.2.

set * - Where * is one of the following:
ssd L - Turn on/off the steady-state detection for time

bounded until (CTMC model).
error_bound R - Error Bound for all iterative methods.
max_iter N - Number of Max Iterations for all iterative

methods.
overflow R - Overflow for the Fox-Glynn algorithm.
underflow R - Underflow for the Fox-Glynn algorithm.
method_path M - Method for path formulas.
method_steady M - Method for steady state formulas.
method_bscc MB - Method for BSCC search.
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Here:
L is one of {on, off}.
R is a real value.
M is one of {gauss_jacobi, gauss_seidel}.
MB is one of {recursive, non_recursive}.

6.1.6 print

Theprint command displays the current status of all relevant run-time settings. A sample
output may look as follows:

---General settings:
Logic = PCTL
Formula ind. lumping = OFF
Formula dep. lumping = OFF
M. C. simulation = OFF
Method Path = Gauss-Seidel
Method Steady = Gauss-Seidel
Method BSCC = Recursive
Results printing = ON

---Numerical methods:
-Iterative solvers:

Error Bound = 1.000000e-06
Max Iterations = 1000000

A complete list of all runtime options and their correspondence to theprint command
output can be found in Section6.2. Below we describe the parameters listed in the output
above:

• General settings

– Logic – Corresponds to thelogic parameter MRMC was invoked with (cf.
Chapter5).

– Formula ind. lumping – Is related to the option-ilump MRMC was
invoked with (cf. Chapter5).

– Formula dep. lumping – Is related to the option-flump MRMC was
invoked with (cf. Chapter5).

– M. C. simulation – Corresponds to the commandset simulation L
(cf. Section6.2.3). With simulation enabled, the output of theprint command
is extended.

– Method Path – Corresponds to the commandset method path M (cf.
Section6.2.1).

– Method Steady – Corresponds to the commandset method steady M
(cf. Section6.2.1).

– Method BSCC – Corresponds to the commandset method bscc MB (cf.
Section6.2.1).

– Results printing – Reports whether model checking results are printed.
In order to manage this option, useset print L (cf. Section6.2.1).
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• Numerical methods

– Error Bound – Corresponds to the commandset error bound R (cf.
Section6.2.2).

– Max Iterations – Corresponds to the commandset max iter N (cf.
Section6.2.2).

Note that, depending on specific run-time settings, the output of theprint command may
be extended with additional information. For example, whenthe simulation engine is turned
on, the user is provided with information about its parameters as well.

6.2 Advanced Commands

In this section, we list the remaining MRMC commands that allow to influence its run-time
behavior. Every command will be given in the following format:

<command name> (relatedprint output) – short description.

6.2.1 Common

Let us consider the MRMC commands responsible for managing the general behavior of
the tool. When displaying the current settings with theprint command, all commands
described here can be found in the sectionGeneral settings . Below we haveL ∈
{on, off } andM∈ {gauss jacobi, gauss seidel }.

set print L (Results printing) – Turns on/off printing of model-checking results
that follows the formula verification procedure.

set ssd L (Steady-state detection) – Turns on/off the steady-state detection for
the time-bounded until operator (CTMC/CMRM).

set method path M (Method Path) – Sets the iterative method for solving a
system of linear equations when computing reachability probabilities for model checking of
an unbounded-until formula (DTMC/DMRM and CTMC/CMRM).

set method steady M (Method Steady) – Sets the iterative method for solving
a system of linear equations when computing steady-state probabilities of BSCCs1. The lat-
ter happens when model checking the steady-state, long-runand unbounded-until formulas
(DTMC/DMRM and CTMC/CMRM).

1Bottom Strongly Connected Components
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set method bscc MB (Method BSCC) – Sets the method used when searching
for bottom strongly connected components. HereMBdefines the BSCCs search implemen-
tation based on:

• recursive – Recursive functions.

• non recursive – Cycle iterations.

Generally, therecursive method is faster, but can run into a segmentation fault caused
by an insufficient stack size (it is likely to happen for largemodels). Thenon recursive
method does not use recursive function calls, and thus avoids the stack exhaustion.

6.2.2 Numerical Methods

In this section we list commands that allow to manage the numerical engine of MRMC. The
list of corresponding parameters can be found in theNumerical Methods section of the
print command output.

set error bound R (Iterative solvers/Error Bound) – Sets the error bound for
all iterative methods.

set max iter N (Iterative solvers/Max Iterations) – Sets the maximum number
of iterations for all iterative methods.

set overflow R (Fox-Glynn algorithm/Overflow) – Sets the overflow threshold
for the Fox-Glynn algorithm [FG88].

set underflow R (Fox-Glynn algorithm/Underflow) – Sets the underflow thresh-
old for the Fox-Glynn algorithm.

6.2.3 Simulation

In this section we list commands related to MRMC’s discrete-event simulation engine. At
present simulation can be used when model checking unbounded-until, time-bounded until,
and steady-state operators on CTMC/CMRM models. We do not support nested simulation.
Therefore, given a formula we only apply simulation to the (appropriate) sub formulas that
have the closest location to the formula-tree root. The sub-formulas that are located below
are verified using numerical methods.

Example 5 Consider the formulaP≤p1
(Ψ U Φ) ∧ S>p2

(P>p3
(Ψ′ U Φ′)) with the corre-

sponding formula tree depicted in Figure6.5. The formula is a conjunction of the unbounded-
until formulaP≤p1

(Ψ U Φ) and the steady-state formulaS>p2
(P>p3

(Ψ′ U Φ′)). The latter
one has an unbounded-until sub formula. In the given situation MRMC applies numeri-
cal methods to verify sub formulaP>p3

(Ψ′ U Φ′). Then the unbounded-until sub formula
P≤p1

(Ψ U Φ) and steady-state sub formulaS>p2
(P>p3

(Ψ′ U Φ′)) are model checked using
simulations.
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∧

P≤p1
S>p2

P>p3

Figure 6.5: Formula tree:P≤p1
(Ψ U Φ) ∧ S>p2

(P>p3
(Ψ′ U Φ′))

With simulation on, theprint command output is extended with parameters of the sim-
ulation engine, cf. Example6 of Chapter8. These options are displayed in theMonte
Carlo Simulation section. Below, we assume thatL ∈ {on, off } andN∈ N.

set simulation L (M. C. Simulation) – Turns MRMC’s simulation engine
on/off. The status of simulation engine is reported under the General settings sub
point of theprint command output.

set sim type ST (Simulation type) – Sets the simulation typeST ∈ {one,
all }. Unlike in numerical model checking, where verification is done for all initial sates at
once, in model checking via simulation we can either do verification for one initial state or
all initial states. The former can be set by using theset initial state N command,
described below.

set initial state N (Sim. initial state) – Sets the state for which the validity
of the formula is going to be verified.

set sim method steady MS (Sim. steady state) – Sets the simulation mode
for the steady-state/long-run operator. Here,MSis one of

• pure – Model checking only by discrete simulation.

• hybrid – Probabilities of reaching BSCCs are computed numerically.

set reg method steady RM (Reg. method steady) – Sets the regeneration
method for the steady-state operator. Here,RMis one of

• pure reg – Random choice of the regeneration state.

• heuristic – Use heuristic to choose a frequently visited regenerationstate.

set gen conf R (Confidence level) – Sets the confidence level (probability) with
which we can trust the model-checking results. Here,R∈ [0.25, 1.0]. Note that, this confi-
dence level is guaranteed only under a specific condition that is explained in Chapter8.

set indiff width R (Indiff. reg. width) – Sets the width of the indifference
region, i. e. the maximum width of the confidence intervals that will be considered. For more
details see Chapter8.
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set max sample size N (Max sample size) – Sets the maximum sample size,
i. e. the maximum number of independent traces to be considered.

set min sample size N (Min sample size) – Sets the minimum sample size,
i. e. the minimum number of independent traces to be considered.

set sample size step type SS (Sample-size step type) – Sets the type
to determine the sample-size increment. Here,SS is one of

• auto – The sample size step is computed and dynamically set based on relevant fac-
tors.

• manual – The sample size step is static and manually set.

set sample size step N (Sample-size step) – Sets the increment for the
sample-size, i. e. the number by which the number of observations in the samples will be
increased, for sequential confidence intervals.

set sim method disc RNG (RNG discrete dist.) – Sets the method of gener-
ating values for discrete random variables (cf. Chapter8). This method is used for simulating
state transitions of embedded DTMCs. The Random Number GeneratorRNGcan be one of
the following:

• app crypt – Combined linear congruential generator.

• ciardo – Improved linear congruential generator.

• prism – Linear congruential generator, similar to the RNG used in PRISM.

• ymer – Mersenne Twister, similar to the RNG used in Ymer.

• gsl ranlux – Ranlux generator, GSL Library.

• gsl lfg – Lagged Fibonacci generator, GSL Library.

• gsl taus – Tausworthe generator, GSL Library.

set sim method exp RNG (RNG exponential dist.) – Sets the RNG for gen-
erating exponentially distributed random variables. Thismethod is used for simulating ex-
ponentially distributed state-exit times. HereRNG∈ { app crypt, ciardo, prism,
ymer, gsl ranlux, gsl lfg, gsl taus }.

Note: The following commands are used for managing options specific for the unbounded-
until operator.

set max sim depth N (Max simulation depth) – Sets the max. simulation
depth, i. e. the maximum number of steps in every simulated path.
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set min sim depth N (Min simulation depth) – Sets the min. simulation
depth, i. e. the minimum number of steps in every simulated path.

set sim depth step N (Simulation-depth step) – Sets the increment for the
simulation-depth, i. e. the number of steps by which the simulation depth will be increased.

set bscc dim multiplier N (BSCC dim. multiplier) – Sets the multiplier
for the heuristic regeneration method. As the multiplier increases the heuristic regeneration
state choice os more likely to produce better results at the expense of runtime.

6.2.4 Rewards

set method until rewards MU (Method Until Rewards) – Defines the
method, that will be used for CSRL model checking of time- andreward-bounded until
formulae. Here,MUis one of:

• uniformization qureshi sanders - Uniformization Qureshi-Sanders [QS96]

• discretization tijms veldman - Discretization Tijms-Veldman [TV00]

• uniformization sericola - Not supported

set w R (Probability threshold) – Sets the path probability bound for Qureshi &
Sanders uniformization algorithm, i. e. only paths with path probability greater or equal to
the bound are considered significant relative to the solution.

set d R (Discretization factor) – Sets the discretization factor for time interval and
accumulated rewards in the discretization algorithm by Tijms & Veldman.
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7 Property Specification with
Temporal Logics

Model checking is the process of checking whether a given model satisfies a given logical
formula. As MRMC is a probabilistic model checker, it supports the common logics for
specification of probabilistic properties, namely PCTL, PRCTL, CSL and CSRL. In this
chapter all the formulae accepted by MRMC will be introducedon the basis of EBNF. For a
property specification example, see Example3 on page8 or Examples7 and8 of Section8.

PCTL and PRCTL as well as CSL and CSRL (cf. Section6.1.2) share a set of common
formulae. Every logic only extends the set of these formulae. Note that in most cases MRMC
performs global model checking, i. e. properties are verified in every model state and the
states satisfying the given formula are reported. The exception is model-checking by discrete
event simulation, there it is possible to check the validityof the formula in just one given
state.

7.1 Common-logic subset

The common formulae are the following:

Common Semantics:

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| ( SFL )
| P{ OP R }[ PFL ]

PFL = X SFL
| SFL U SFL

We distinguish between two types of formulae: state and pathformulae. A state formula
SFL is interpreted over the states of the considered system and therefore results in a set of
states satisfied by the formula. A path formulaPFL is interpreted over system paths and
thus for every given initial state results in a set of paths, starting in this state, that satisfy the
formula.
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7.1.1 State formulae ( SFL)

tt (True) – Is a constant satisfied in every state of a model.

ff (False) – Is a constant satisfied in none of model states.

LABEL (Atomic proposition) – Is satisfied in the states assigned with the given atomic
proposition (label).

!SFL (Negation) – Is satisfied in states, which do not fulfillSFL.

SFL1 && SFL2 (Conjunction) – Is satisfied in states fulfilling bothSFL1 andSFL2.

SFL1 || SFL 2 (Disjunction) – Is satisfied in states fulfillingSFL1 or SFL2.

P{ OP R}[ PFL] (Probability measure) – For every state, it asserts that the prob-
ability measure of paths starting in the given state and satisfying PFL meets the probability
constraintOP R. HereOP∈ {>, <,≤,≥} andR∈ R[0,1].

7.1.2 Path formulae ( PFL)

X SFL (Next) – Asserts that on a path, starting in some states, the immediate successor
state ofs satisfies the formulaSFL.

SFL1 U SFL2 (Unbounded until) – Asserts that on a path there is a state satisfying
SFL2 and all preceding states satisfySFL1.

7.2 PCTL

PCTL [HJ94] is an extension of CTL, which allows for probabilistic quantification of prop-
erties. PCTL extends the set of common formulae by one state and one path formula.

SFL = ...
| L{ OP R }[ SFL ]

PFL = ...
| SFL U[ N, N ] SFL

L{ OP R }[ SFL ] (Long-run) – Checks if the long-run probability for being in
states that fulfillSFL meet the probability constraintOP R.

SFL1 U[ 0, N ] SFL 2 (Time-bounded until) – Asserts that on a path there is a
state satisfyingSFL2, such that this state is reached withinN time steps (transitions) and all
preceding states on the path satisfySFL1.
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7.3 PRCTL

PRCTL [AHK03] is the rewards extension of PCTL and therefore extends PCTLwith the
following formulae:

SFL = ...
| E[ R, R] [ SFL ]
| E[N][ R, R] [ SFL ]
| C[N][ R, R] [ SFL ]
| Y[N][ R, R] [ SFL ]

PFL = ...
| SFL U[ N, N ][ R, R ] SFL

E[ R 1, R 2 ] [ SFL ] – Asserts that the long-run expected reward rate per time-
unit for SFL states lies within the interval[R 1, R 2] .

E[N][ R 1, R 2 ] [ SFL ] – Asserts that the expected reward rate inSFL-states
up to n transitions reached at theN-th epoch lies within the interval[ R 1, R 2 ] .

C[N][ R 1, R 2 ] [ SFL ] – Asserts that the instantaneous reward inSFL states
at theN-th epoch lies within the interval[ R 1, R 2 ] .

Y[N][ R 1, R 2 ] [ SFL ] – Asserts that the expected accumulated reward rate
in SFL states until theN-th transition lies within the interval[ R 1, R 2 ] .

SFL1 U[ N1, N 2 ][ R 1, R 2 ] SFL 2 (Time- & reward-interval until) –
Asserts thatSFL2 will be satisfied withinj ∈ [ N 1, N 2 ] steps, that all preceding states
satisfySFL1, and that the accumulated reward until reaching theSFL2-state lies in the inter-
val [ R 1, R 2 ] .

7.4 CSL

CSL [BHHK03] extends PCTL, but it works with the continuous time domain.Here the
long-run operatorL{ OP R } is substituted with the steady-state operatorS{ OP R }
and the time-bounded next operator is added:

SFL = ...
| S{ OP R }[ SFL ]

PFL = ...
| X[ R, R ] SFL

S{ OP R }[ SFL ] (Steady-state) – Is similar to the long-run operator of PCTL,
cf. Section7.2.

31



X[ R 1, R 2 ] SFL (Time-bounded next) – Asserts that a transition is made to a
SFL state at some time pointt ∈ [ R 1, R 2 ] .

7.5 CSRL

CSRL [CKKP05] extends CSL with the following formulae:

PFL = ...
| X[R, R][R, R] SFL
| SFL U[ R, R ][ R, R ] SFL

X[ R 1, R 1’ ][ R 2, R 2’ ] SFL (Time- & reward-interval next) – Asserts
the a transition can be made to aSFL state at some time pointt ∈ [ R 1, R 1’ ] such that
the accumulated reward until time pointt lies in the interval[ R 2, R 2’ ] .

SFL1 U[ 0, R 1 ][ 0, R 2 ] SFL 2 (Time- & reward-bounded until) – As-
serts thatSFL2 is satisfied at some time instantt ∈ [ 0, R 1 ] such that the accumulated
reward untilt lies in the interval[ 0, R 2 ] , and that at all preceding time instantsSFL1

holds.
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8 Model Checking by Discrete Event
Simulations

Since MRMC v1.3, we support model-checking by means of discrete event simulation. Be-
ing statistical in nature, such an approach cannot guarantee that the verification result is100%
correct. Yet, it allows to bound the probability of generating an incorrect answer to a verifica-
tion problem, and, unlike the numerical approaches1, model checking using simulations does
not suffer from the state-space explosion. Note that, in thecurrent implementation MRMC
operates on the pre-generated Markov chain which is completely loaded into the computer’s
RAM2, therefore the state-space explosion is not eliminated.

Techniques for model checking CSL (PCTL) properties using simulations have already
been developed. For example in [YS02], later extended by [YS06], an algorithm based
on Monte Carlo simulation and hypothesis testing for non-explosive stochastic discrete-
event systems is suggested. In [SVA04], the algorithms of [YS02] are extended to sta-
tistically verify black-box, deployed systems with a passive observer. Both statistical ap-
proaches [YS02, SVA04] considered a sub-logic of CSL that excludes steady-state and
unbounded-reachability properties. In [You04], the algorithm is extended to deal with a
subclass of unbounded-reachability problems. In [SVA05] the statistical verification method
of [YS02] is extended to verify unbounded-reachability propertiesof CSL (or PCTL) on
finite-state CTMCs (DTMCs), and SMCs. All these approaches presume an “on-the-fly”
model generation.

Contrary to the above mentioned techniques, our approach isbased on Monte Carlo sim-
ulation and derivation of confidence intervals. We provide statistical algorithms for model
checking the most interesting CSL operators, such as steady-state, unbounded-reachability,
and time-interval reachability operators. In addition, when model checking unbounded-
reachability or steady-state properties of CSL, we do simulations on the embedded DTMC.
The latter simplifies simulation runs and also lets the corresponding techniques for model
checking of PCTL properties on DTMCs to be easily derived. Wedo not consider nested
simulation, see Section6.2.3on page25, and working with finite-state systems, we assume
that we can deduce the structure of the Markov chain. For instance we can detect Bottom
Strongly Connected Components (BSCCs) of the Markov chain.For more details on the
implemented algorithms, as well as comparison to the previously existing simulation tech-
niques, consider reading Part2 of [Zap08].

Of course, the quality and speed of simulations heavily depends on the quality and speed
of the underlyingrandom number generator (RNG). For this reason seven different RNGs,
which vary in many aspects, are available in MRMC. The ones with the best performance

1Numerical model checking is carried out by symbolic and numerical methods.
2Random access memory.

33



and reliability results are set to be used by default. For an extended experimental comparison
of available RNG’s, consider reading AppendixB.

The rest of this chapter is organized as follows. In Section8.1 we introduce the main
concepts of using confidence intervals in model checking. Further, in Section8.2we discuss
the simulation engine of MRMC on the basis of several examples.

8.1 Confidence intervals and model checking

Let us consider the verification of the three most important operators of CSL: the unbounded-
until operatorP⊲⊳ b (A U G), the steady-state operatorS⊲⊳ b (G), and the time-interval until
operatorP⊲⊳ b

(
A U[t1,t2] G

)
, with t1, t2 ∈ R≥0 andt1 ≤ t2. We assume that⊲⊳∈ {<,≤, >,≥

} and, since we do not consider nested simulation, bothA andG are treated as sets of states.
In order to verify the formulasP⊲⊳ b (A U G), P⊲⊳ b

(
A U[t1,t2] G

)
or S⊲⊳ b (G), we apply the

following procedure. First, for an initial states0 the probabilityp̃ (= Prob(s0, A U G),
= Prob

(
s0, A U[t1,t2] G

)
or = Prob∞ (s0, G)) is estimated in a form of thec. i. Second, the

c. i. of p̃ is checked against the probability constraint⊲⊳ b, to assess whethers0 satisfies the
given formula or not.

Leaving the task of computing thec. i. of p̃ out of scope, further we concentrate on the
second step of the outlined approach. There are two important reasons for that. First, this
procedure is universal for all considered operators. Second, because of the probabilistic
nature of thec. i., the procedure should guarantee the correctness of the result with some
(predefined) confidence.

Further, we split our discussion into three parts. First, weshow how to decide oñp ⊲⊳ b
when it is known that̃p ∈ [Al, Ar]. Then, we recall the notion of thec. i. of p̃ and outline
several problems related to the use ofc. i. in validation ofp̃ ⊲⊳ b. Finally, we show how to
overcome this problems, either by imposing some assumptions or by putting constraints on
the width of the usedc. i.

8.1.1 Simple problem

Let the value of̃p be unknown, but let us also know two boundsAl, Ar ∈ R≥0 such that
Al ≤ p̃ ≤ Ar. In this setting, assessing whetherp̃ ⊲⊳ b holds can be done based on the
boundsAl andAr in a straightforward manner. Clearly, such an assessment, for all allowed
⊲⊳ , is possible only ifb 6∈ [Al, Ar] and thus the check yields three possible answers: positive
(TRUE ), negative (FALSE ), or “Don’t know” (NN ).

8.1.2 Using confidence intervals

For a given confidenceξ and sample sizeM ∈ N≥2, thec. i. of p̃ can be represented in the
following form:

Prob
(
Al

(−→
X

)
≤ p̃ ≤ Ar

(−→
X

))
≈ ξ, (8.1)

where
−→
X is a sample obtained via simulations of the given Markov chain. Equation (8.1)

indicates that sampled intervals
[
Al

(−→
X

)
, Ar

(−→
X

)]
containp̃ in about100 · ξ % cases. The

latter implies that using thec. i. of p̃, for decidingp̃ ⊲⊳ b, brings us two problems:
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• If b = p̃ then the solution of the model-checking problem is generally unknown. I.e.,
similar to model checking by means of hypothesis testing [YS06, SVA04, SVA05], the
analysis based on thec. i. will be inconclusive. Clearly, in this case with probability ξ

we havẽp, b ∈
[
Al

(−→
X

)
, Ar

(−→
X

)]
.

• Due to the probabilistic nature of thec. i., the result of the comparison between the
c. i. and constraint⊲⊳ b becomes probabilistic itself. This means that, in order to give
a correct answer tõp ⊲⊳ b, it is not enough to check thec. i. of p̃ against⊲⊳ b. In
addition, we have to provide a confidence with which the result of such comparison
provides a correct answer to the original problem.

8.1.3 Solving the problems

The first problem is generally unsolvable. Thus we can only assume that|b − p̃| = δ with
δ ∈ R>0. Under this assumption, the second problem can be solved as follows.

Let us chooseδ′ ∈ R>0 such thatδ′ < δ and consider onlyc. i. bordersAl

(−→
X

)
, Ar

(−→
X

)

such thatAr

(−→
X

)
− Al

(−→
X

)
≤ δ′. Clearly, using suchc. i. for deciding onp̃ ⊲⊳ b will

guarantee us that in at least3 100 · ξ % cases we will be given a correct answer.
In the solution above,δ′ is defined usingδ which is unknown. Yet, it is clear that an

incorrectly chosenδ′ can be recognized by the fact that in repetitive simulationsthe combined
percentage of “incorrect” and “Don’t know” answers exceeds100 · (1 − ξ) %.

Note that, producing aδ′-tight c. i. is a matter of computing a sequential confidence inter-
val. In MRMC we implemented a naive procedure where we increase the sample size until
the c. i. becomes narrow enough. We realize that using this improper procedure can cause
the decrease of the confidence levels, although this was not observed in our experiments, see
Chapter 7 of [Zap08]. The description of a proper sequentialc. i. derivation can be found in
[Fis96, CR65].

Let us summarize that for a given confidenceξ and a maximumc. i. width δ′ the simulation
engine of MRMC guarantees to provide the correct answer to the model-checking problem
if the following conditions hold:

1. |b − p̃| = δ ∈ R>0 2. δ′ ∈ R>0 andδ′ < δ

Note that, in MRMCδ′ corresponds to the value ofIndiff. reg. width , man-
ageable by theset indiff width R command, see Section6.2.3.

8.2 Simulation engine

In this section we provide several examples that explain howthe simulation engine of MRMC
can be used.

Example 6 Consider the dice model depicted in Figure2.2 on page6. Let us forget about
its rewards and assume that this model is a CTMC. Then if we invoke MRMC on this model,
turn the simulation engine on and use theprint command, we get the following:

3An incorrectc. i. of p̃ can still result in the correct answer tõp ⊲⊳ b.
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$ mrmc ctmc game.lab game.tra
...
>> set simulation on
>> print
---General settings:
...
M. C. simulation = ON
...

---Monte Carlo simulation:
Simulation type = ALL
Sim. steady state = HYBRID
Reg. method steady = HEURISTIC
Confidence level = 9.500000e-01
Indiff. reg. width = 2.000000e-02
Max sample size = 100000
Min sample size = 10000
Sample-size step type = AUTO
Sample-size step = 100
RNG discrete dist. = Appl. Crypt.
RNG exponential dist. = GSL Taus
Max simulation depth = 100000
Min simulation depth = 10000
Simulation-depth step = 1000
BSCC dim. multiplier = 3

---Numerical methods:
...

Here, for brevity, we omitted uninteresting parts of the output. Notice that, the section called
General settings indicates that the simulation engine is activated, and the newly ap-
peared sectionMonte Carlo simulation contains most of the options, manageable
by the commands given in Section6.2.3. Note that, more options are available in case of
doing simulations for one initial state:

>>set sim_type one
>>print
---General settings:
...

---Monte Carlo simulation:
Simulation type = ONE
Sim. initial state = 1
...

Above, the simulation mode is changed and the new optionSim. initial state indi-
cates that the default initial state is1.

In the following example we are going to consider the most typical case of model-checking
using the simulation engine:

Example 7 Extending Example6, let us be interested in a simple question: Is the probability
to reach thegoal state without visiting thelossstate greater than0.3? The latter can be
expressed as the following CSL formula:P>0.3 (¬loss U goal).

As we would like to check the above formulated question by means of simulation, we invoke
MRMC’s simulation engine by typingset simulation on . Providing MRMC with the
formula above will cause the tool to run its model checking procedure:

>>set simulation on
>>P{> 0.3} [ !loss U goal]
$SIMULATED: YES
$MAX_NUM_USED_OBSERV: 101944
$CONFIDENCE: 9.500000e-01
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$CI_LEFT_RESULT: ( 0.1919024, 0.0000000, 0.1893418, 0.19 74192, 1.0000000 )
$CI_RIGHT_RESULT: ( 0.2097583, 0.0000000, 0.2051940, 0.2 114822, 1.0000000 )
$YES_STATE: { 5 }
$NO_STATE: { 1, 2, 3, 4 }

The Total Elapsed Model-Checking Time is 115 milli sec(s).
>>

As a result, we get four relevant outputs: two probability vectors $CI LEFT RESULT
and $CI RIGHT RESULT, as well as the two state sets$YES STATEand $NOSTATE.
The probability vectors correspond to the left and rightc. i. borders derived for the first,
second, etc. state of the model. Note that, the trivial probabilities, i. e.0.0 and1.0, are most
likely to be computed via graph analysis. The$YES STATEset contains the states in which
the formula is satisfied. The$NOSTATEset contains states in which the formula is not
satisfied. If the for a given state the simulation result is inconclusive, then it does not appear
in any of the sets.

In the output above,$MAXNUMUSEDOBSERVindicates the maximum – over all initial
states – number of states that were considered in order to provide the answer for the given
model-checking problem. More specifically, we count statesvisited during the simulation
procedure. Therefore, the same model state is counted as many times as it is visited. On
the other hand, we do not take into account state visits that occur during the model-graph
analysis or numerical computations (for the case of hybrid simulation).

The$CONFIDENCEoutput tells us, that the results are correct with the95% confidence.
In is important to note that in case of nested formulas, when we have to simulate more than
one operator, the confidence levels for sub formulas are derived from the overall confidence
level. Their values then can be viewed by using theprint tree command, see Section6.1.

In the following example we are going to explain two important cases: the output of the
simulation results for one initial state; and an insufficient number of observations.

Example 8 Extending Example7, let us assume that we are only interested in verifying
P>0.3 (¬loss U goal) in state3. Also, we can be afraid of spending too much time on simu-
lation and thus want to reduce the maximum sample size and simulation depth. The latter is
important only for model checking the unbounded-until, or the steady-state (by pure simula-
tion) operators. Then our interaction with MRMC might look as follows:

>>set simulation on
>>set sim_type one
>>set initial_state 3
>>set min_sample_size 10
>>set max_sample_size 30
>>set min_sim_depth 10
>>set max_sim_depth 30
>>P{> 0.3} [ !loss U goal]
$SIMULATED: YES
$INITIAL STATE: 3
$MAX_NUM_USED_OBSERV: 308
$CONFIDENCE: 9.500000e-01
$CI_LEFT_RESULT: ( 0.1154063 )
$CI_RIGHT_RESULT: ( 0.3023792 )
$YES_STATE: { }
$NO_STATE: { }
$INDIFF_ERR_STATE: { 3 }
WARNING: Increase max_sample_size for obtaining the conf. int. of the desired width.

The Total Elapsed Model-Checking Time is 0 milli sec(s).
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Here, we first set simulation mode toone and then set the initial state to be3. Next, we
reduce the minimum and the maximum sample sizes and simulation depths. After that we
invoke the model checking procedure. In this case thec. i.-border arrays have size1. This
can be checked by the following:

>>$RESULT[1]
$CI_LEFT_RESULT[1] = 0.1154063
$CI_RIGHT_RESULT[1] = 0.3023792
>>$RESULT[3]
$CI_LEFT_RESULT[3] = ??
WARNING: Invalid index 3, required to be in the [1, 1] interva l.
$CI_RIGHT_RESULT[3] = ??
WARNING: Invalid index 3, required to be in the [1, 1] interva l.

Here, unlike in the previous example, the sets$YES STATEand $NOSTATEare empty.
This should indicate that the simulation provides inconclusive results. Moreover, andthis
is an important part , a new set$INDIFF ERRSTATE is added to the output. This set
contains our initial state, i. e.3. If this set appears in the output, it means that the max.
number of observations (the max. sample size) and/or the max. simulation depth are not
large enough to produce thec. i. tighter than the (specified) value ofIndiff. reg.
width , see Section8.1. If this happens, the simulation run should be discarded, and the
max. sample size / simulation depth values have to be increased.
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9 MRMC Test Suite

In order to keep MRMC bug free and to compare its performance to other model-checking
tools (such as PRISM [KNP02], Ymer [You05b] and VESTA [SVA04]) we have developed
a fully automated test suite featuring: internal, functional and performance tests.

The internal tests are targeted on testing, e. g., MRMC data structures, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functional tests are used to assess the user-level
behavior of the tool. This includes tests for the command-line interface, model-checking
algorithms, and etc. Last but not least, the performance tests allow to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisimulation minimization, and “discrete
event simulation” based model checking. Here, we consider several efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wireless Group Communication Pro-
tocol (WGC) [MNS99, BCG02, MKL04], Simpel Peer-To-Peer Protocol (PTP) [KNP06],
Workstation Cluster (WC) [HHK00, BKKT03, YKNP04, KNP02, KNP08b], Cyclic Server
Polling System (CSP) [IT90, You05b, You05a, HKMKS00, SVA04, YKNP06, YS06], Ran-
domized Mutual exclusion (RME) [PZ86], Crowds Protocol (CP) [RR98, KNP08a] and Syn-
chronous Leader Election Protocol (SLE) [IR90, LP02, GSB94, FP04].

The test suite is freely distributed and can be obtained from:

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linux platform only and its performance
sub suite is not proven to work correctly under ”Windows + Cygwin” or ”Mac OS X”. For
the test-suite installation instructions see Section3.2of Chapter3. The test-suite structure is
as follows:

• ./TS Manual.pdf – The test-suite manual.

• ./LICENSE – A copy of the GPL license.

• ./README – The “read me” file.

• ./RELEASENOTES – The release notes.

• ./settings.cfg – The configuration script.

• ./test all.sh – The test-suite invocation script.

• ./clean all.sh – The test-suite “clean-up” script.

• ./stop.sh – The test-run termination script.

• ./internal tests/ – Unit tests of the MRMC core.
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• ./functional tests/ – Functional tests of MRMC.

• ./performance tests/ – Performance tests of MRMC.
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10 Contact

The development of MRMC began in 2004 in the Formal Methods and Tools group (FMT)
at the University of Twente (The Netherlands) under the supervision of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool was moved to the Software Modeling
and Verification group at the RWTH Aachen (Germany). At present there are several other
groups involved into the tool development, namely the Informatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netherlands), the Dependable Systems
and Software group at the University of Saarland (Germany),and the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde en Informatica (The Netherlands).

If you have any questions, comments or ideas, or if you want toparticipate in MRMC
development, please consider the following contact information:

Name: Prof. Dr. Ir. Joost-Pieter Katoen
Relation: The MRMC team leader, 2004 – present
Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. Ivan S. Zapreev
Relation: MRMC development, 2004 – present
Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. Ir. David N. Jansen
Relation: MRMC extension and optimization, 2007 – present
Affiliation: Informatics for Technical Applications, Radboud University
Nijmegen, The Netherlands

Name: Prof. Dr. Ing. Holger Hermanns
Relation: CTMDPI model checking, 2007 – present
Affiliation: Dependable Systems and Software, University of Saarland,
Germany

More contact information can be found on the MRMC web-page [ZJN+08].
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A CTMDPI: Model examples

This appendix describes CTMDPI models supported by MRMC. These are the input mod-
els for the CTMDPI model-checking component [BHKH05] of MRMC, developed by the
Dependable Systems and Software group [Her] of the Saarland University.

A.1 Markov decision processes

In general, Markov decision processes (MDPs), and CTMDPIs in particular, are similar to
Markov chains, except that in addition to the stochastic transitions they also allow for the
non-deterministic ones. The non-determinism introduced by them is supposed to be resolved
by some scheduler.

Typically, MDPs are expected to have an initial distribution. However, we will assume
that there is just one initial state, namely the state1 of any given CTMDPI model.
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Figure A.1: A CTMDP example

Example 9 An example CTMDP is depicted in FigureA.1. This model contains only two
states:1 and2. For the first one, a scheduler can choose between two transitions, namely
a andb. If the choice is done in favor of the first one, then further wehave a probabilistic
choice defined by the rate3 of going to state2 and the rate of4 of going back to state1.
Alternative, if the scheduler choosesb, the rate of returning to state1 is only1 and to state
2 is 6. State2 does not have a true non-deterministic choice, because there is only one
non-deterministic transition present.

It becomes clear now, that with MDP models, like with simple CTMCs, one can be inter-
ested in computing, e. g., reachability probabilities and etc. The only difference is that, since
we can have any possible scheduler, we have to talk about minimal and maximal probabili-
ties. All this implies that we can actually do model checkingof CTMDPs.
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A.1.1 Markov decision processes with internal non determin ism

The CTMDP described before has only one level of non determinism. It is also possible to
have CTMDPs with two layers of non-determinism, in this casewe call them CTMDPIs. On
the first layer, an external scheduler takes a decision, thenan internal decision occurs, and
after this the probabilistic decision takes place.
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#END
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* 1 2.0

Figure A.2: A CTMDPI example

Example 10 Consider a CTMDPI model given in the left-hand side of FigureA.2. In this
model, state1 has two external non-determinism choices:a andb. If decisiona is taken,
then there is an internal non-deterministic choice. One branch of it leads to going to state
2 with the rate7. The other one leads to going to state2 with the rate3 and to state1 with
the rate4. Decisionb leads to a trivial internal non-determinism. State2 has an internal
non-determinism as well.

The CTMDP examples above are given by state-transitions, corresponding distributions,
and labeling functions that map sets of labels to the transitions. Note that, for model checking
we also need to provide state labeling functions (in our cases the set of state labels are empty).

In order to be used with MRMC, CTMDPIs have to be transformed into the MRMC input
files that have an extension.ctmdpi . For example, the model given in the left-hand side
of FigureA.2 results in a file given in right-hand side of the same figure. Itis important to
note, that CTMDPI model checking uses CSL for specifying properties. At present we only
support time-bounded reachability properties. Similar tothe CTMC model checking, these
properties are based on state labels that have to be specifiedin a .lab file. The transition
labels are needed only for the CTMDPI model-checking engineand should not be used in
properties.
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B RNG Investigations

We define random number generators (RNGs) as algorithms thatallow to generate uniformly
distributed random numbers for a prescribed real interval.

RNG implementations are commonly used in programming and especially in discrete-
event simulation engines. In MRMC we use RNGs for simulatingdiscrete or exponentially
distributed random variables. The first ones are used to simulate the probabilistic choice
between state-transitions and the second ones are employedto simulate exponentially dis-
tributed waiting times of CTMC states.

Nowadays, there exist many RNGs, but often these generatorsvary in various aspects. For
example, they can differ in: time needed to calculate a random number or the quality of their
output. The latter aspect can be split in (at least) two parts: one generator can calculate more
equidistributional random numbers than the other; different generators can have different
periods, i. e. the number of method invocations after which the generated random numbers
start to repeat in a circular manner. In our experiments, though, we mainly concentrated
on how good RNGs are for generating values of non-uniform discrete and exponentially
distributed random variables. This was done by accessing the speed of random-number
generation and the correspondence of the sampled distributions to the original ones.

To choose which generator is better and can be used as a default one in MRMC, we
tested seven different RNGs. Some of them were taken becausethey already made it into
probabilistic model checkers such as PRISM, Ymer or VESTA, the others are widely used
in industry, and etc.

The rest of the appendix is organized as follows: SectionB.1presents the description of the
considered RNGs. Further, in SectionB.2, we explain how RNGs can be used for generating
values of non-uniform discrete and exponentially distributed random variables, and present
the experimental setup. SectionB.3 provides the experimental results and comparison.

B.1 Random Number Generators

Here, we provide a short summary of the tested RNGs, and also indicate the MRMC option
values corresponding to each of them.

B.1.1 Linear Congruential Generator (LCG) – prism

LCG is the oldest and mostly used random-number generator algorithm. A sequence of
random numbers is calculated according to the formulaxn+1 = (a ∗ xn + c) mod m, where
x0 denotes the seed (the initial value) andm is the RNG’s period. The considered LCG is
implemented as the random functionrand()of the standard C library (gcc). The use ofrand()
was taken into account, because PRISM uses it in its simulation engine. However, it should
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be noted that the C random function is known to suffer from a low period. Even the32-bit
version of it can only offer a period ofm = 232.

B.1.2 Improved LCG [ PM88] (ILCG) – ciardo

ILCG is a version of LCG, developed by Steve Park and Keith Miller. It works similar to
the Standard C random function, but is known to generate moreequidistributional random
numbers. Therefore, it is often proposed to be used instead of rand(), although it also has a
small period ofm = 232.

B.1.3 Combined LCG [ Sch95] (CLCG) – app crypt

This RNG is another extension of the standard LCG. The main advantage of this method is
that, by using two independent LCGs, it increases the periodup to aboutm = 264. Note that,
in most cases it is more efficient to combine two LCGs than taking one with a much larger
modulus (period). CLCG is widely used in the field of Cryptography.

B.1.4 Mersenne Twister [ MN98] (Twister) – ymer

The Mersenne Twister is a random-number generator developed by Makoto Matsumoto and
Takuji Nishimura in1997. Today, there exist several variants of this algorithm. We have
chosen Mersenne Twister MT19937 (32-bit version), because it is the newest and most com-
monly used one. This algorithm is also employed by Ymer and comes with a large period of
m = 219937 − 1.

B.1.5 RNGs from GSL [ PtFSF07b]

RNGs introduced in this section are a part of the GNU Scientific Library (GSL).

Ranlux Generator (Ranlux) – gsl ranlux

According to the GSL documentation, the implemented RANLUXalgorithm is a second-
generation version of the RANLUX algorithm of Lüscher and has a period of aboutm =
10171. GSL developers recommend this algorithm as the one with thebest mathematically-
proven quality at the expense of performance.

Lagged Fibonacci Generator (LFG) – gsl lfg

According to the GSL documentation, LFG produces random numbers asxor’d sum of
previously calculated values on the basis of the following formula:

rn = rn−A XOR rn−B XOR rn−C XOR rn−D

with A = 471, B = 1586, C = 6988, D = 9689. This RNG has a period ofm = 102917

and is recommended by GSL developers as a fast simulation-quality generator.
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Tausworthe Generator (Tausworthe) – gsl taus

According to the GSL documentation this is a maximally equidistributed combined Taus-
worthe generator (or polynomial generator) by L’Ecuyer with a period ofm = 288 (about
1026). Like the lagged Fibonacci generator, the Tausworthe generator is recommended by
GSL developers as a fast simulation-quality generator (which is faster than LFG).

B.2 Experimental setup

In this section, we describe the experimental setup used forthe evaluation of the before
mentioned RNGs, in application to generation of non-uniform discrete and exponentially
distributed random variables.

In essence, our approach is based on taking a random variablewith a particular distribution
and sampling a set of its values (produced with the help of a particular RNG). These values
are then used for computing the estimate of the underlying distribution. The latter one is
compared to the original distribution of the random variable. The main values measured in
our experiments (per distribution), are as follows:

1. The time needed for generating a random values when using aparticular RNG.

2. The difference between the estimated and original distributions.

B.2.1 Non-Uniform Discrete Random Variables

Generation of non-uniformly distributed discrete random numbers, employing standard RNGs
mentioned in SectionB.1, is typically done in the following manner.

Let us have a discrete random variablex with a finite set of valuesx1, . . . , xn. The value
xi is then produced with probabilitypi for anyi ∈ 1, . . . , n and

∑n

i=1 pi = 1.0. Let us now
have an RNG which generates us random numbers in the interval[A, B] with 0 ≤ A < B.
Then, to generate values ofx we should perform the following steps:

1. Split the real interval[0, 1] into n fixed non-overlapping intervalsI1, . . . , In such that
the width ofIi equals topi for anyi ∈ 1, . . . , n.

2. Generate a uniformly-distributed random numberC and scale it down using the for-
mulaC/ (B − A). This way we obtain the value in the interval[0, 1].

3. Find j ∈ 1, . . . , n such thatC/ (B − A) ∈ Ij. This j exists because{Ii}
n

i=1 forms a
coverage of[0, 1].

4. Returnxj as the value of the random variablex.

Clearly, step1. has to be performed only once and states2. to 3. result in values ofx that
agree to its distribution.
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Test Distributions

For our experiments we have chosen six different probability distributions. Each of these
distributions had100 values, most of which with non-zero probabilities.

1. The standard uniform distribution (“Unif”).

2. A non-uniform distribution (“Diff”), where one value appears with a very high proba-
bility (0.899924), and all other values have very small or zero probabilities.

3. The “Lorentz” distribution1 with the largest and smallest probabilities being equal to
0.013151 and0.00685 respectively.

4. Three distributions: “Pow2”, “Pow3” and “Pow4”. For eachX ∈ {2, 3, 4}, “PowX”
was generated as follows:

a) Generate100 random values using a uniform distribution on the interval[0, 1].
b) Take these values to the powerX.
c) Normalize the resulting values in such a way that they sum up to one.
d) Take the new values as probabilities for the distributionon1, . . . , 100.

Test Settings

For a given RNGR and a distributionD every distribution estimate was computed based
on 1.000.000 sampled values. Also, for every givenD andR, we computed50 distribution
estimates.

The run time forR onD was calculated as a mean time needed for generating50 distribu-
tion estimates. The quality of eachR onD was estimated based on the following quantitative
value:

100∑

i=1

1

50

50∑

j=1

∣∣pj
i − pi

∣∣
pi

, (B.1)

where{pi}
100
i=1 is the set of probability values of the original distribution and

{{
pj

i

}100

i=1

}50

j=1

are the probabilities of the50 sampled distributions.

B.2.2 Exponentially Distributed Random Variables

The exponential distribution is a probability distribution over the set of positive real num-
bers. In order to generate values of an exponentially-distributed random variable, we use the
commonly known inversion method: ifu is a uniformly-distributed random variable then

x := −
1

λ
ln(1 − u)

has exponential distribution with the rateλ. As an optimization, we use formula:

x := −
1

λ
ln(u),

1a well-known probability distribution in physics
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since1 − u is a uniformly-distributed random variable itself.

Test Distributions

We considered exponential distributions withλ ∈ {0.01, 0.1, 0.5, 1.0, 5.0, 10.0}.

Test Settings

For every givenλ (distributionEλ) and every RNGR we sampled10.000.000 random values.
The run time forR on Eλ was calculated as a total time needed for generating all of

these values. Since exponential distribution is continuous, the quality of eachR on Eλ was
estimated using discretization:

1. ComputeM – the maximum over all simulated values.

2. Forδ = 0.3, computeN = M/δ+1 – the number ofδ intervals that form a partitioning
of the simulated values:{Ii}

N

i=1 whereIi = [(i − 1) ∗ δ, i ∗ δ)2

3. DefinePi = Prob(X ∈ Ii) for i ∈ 1, . . . , N andX being a random variable with the
distributionEλ.

4. DefineP ′
i = Si/107 for i ∈ 1, . . . , N andSi being the number of simulated values that

fall into the intervalIi.

This process gives us a discrete distribution: for anyi ∈ 1, . . . , N we haveIi with probability
Pi; and an estimate of this distribution: defined by the values of {P ′

i}
N

i=1. The quality ofR
onD was then estimated based on the quality of the discritized exponential distribution and
its discritized estimate. This was done by computing the following quantitative value:

N∑

i=1

|Pi − P ′
i |

δ
. (B.2)

Note that, this formula is different from the one given by Equation B.1. Here we divide
|Pi − P ′

i | by δ because we are interested in the quality with which we approximate the density
function of the original (continuous) distribution.

B.3 RNG comparison - results

All experiments were done on a standard PC with an AMDR© Athlon R© CPU3000+ processor
(64-bit) and and2 GB of RAM. The used operating system was openSuSE10.2.

B.3.1 Non-Uniformly Random Numbers

A brief summary of the obtained results can be found in TableB.1.

2 In our experiments, we had probabilities over intervals:[0.0, 0.3) , . . . , [2.7, 3.0) for λ ∈
{0.01, 0.1, 0.5, 1.0, 5.0}; and[0.0, 0.3) , . . . , [1.2, 1.5) for λ = 10.0.
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Position Speed Simulation Quality

1. LFG Ranlux
Tausworthe

CLCG
2. Twister LFG

LCG Tausworthe
ILCG CLCG

Twister
ILCG

3. Ranlux LCG

Table B.1: Non-uniform discrete random variables

Run time

The time needed for generating1.000.000 random values for the considered RNGs on cor-
responding distributions is provided in FigureB.1. The quality of every RNG on every
distribution is summarized in TableB.2.
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Figure B.1: Run time: Non-uniform discrete random variables

Having a closer look at FigureB.1and TableB.2, the results can be formulated as follows.
From the run-time point of view, the RNG with worst performance is clearly the Ranlux
Generator, which positioned itself behind all other RNGs inevery of the six test cases. The
first three places are fought out between Tausworthe, LFG andCLCG in three out of six test
cases, whereat they still gained leading positions in the remaining three cases. By looking at
the plots in detail, one may notice that LFG and Tausworthe have similar results in every test
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P
os

. Distribution
Diff Pow2 Pow3 Pow4 Unif Lorenz

1 Tausworthe LFG LFG CLCG LFG CLCG
2 LFG Tausworthe Tausworthe Twister Tausworthe LCG
3 CLCG CLCG ILCG LFG CLFG Tausworthe
4 LCG Twister LCG LCG ILCG LFG
5 Twister LCG Twister Tausworthe LCG Twister
6 ILCG ILCG ILFG ILCG Twister ILCG
7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.2: Run time: Non-uniform discrete random variables

case, whereas CLCG is remarkably faster in “Lorentz” and “Pow4”, remarkably slower in
“Diff” and “Unif” distribution. Summarized, LFG and Tausworthe positioned themselves in
first place, closely followed by CLCG. The middle-ranked RNGs are then LCG, ILCG and
Twister with similar results, with ILCG tending to be the slowest out of this three RNGs,
except from the “Unif” test case, and with Twister and LCG swapping positions from case
to case.

Sums of average errors

The sum of average errors for the considered RNGs on corresponding distributions is pro-
vided in FigureB.2. The quality of every RNG on every distribution is summarized in
TableB.2.
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Figure B.2: Sums of average errors: Non-uniform discrete random variables
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P
os

. Distribution
Diff Pow2 Pow3 Pow4 Unif Lorenz

1 ILCG Ranlux CLCG Ranlux ILCG ILCG
2 Twister Tausworthe Ranlux CLCG Ranlux LFG
3 LFG LFG ILCG LFG LFG Twister
4 CLCG Twister Twister Tausworthe Tausworthe Ranlux
5 LCG CLCG Tausworthe Twister Twister Tausworthe
6 Tausworthe ILCG LFG ILCG CLCG CLCG
7 Ranlux LCG LCG LCG LCG LCG

Table B.3: Sums of average errors: Non-uniform discrete random variables

The results of FigureB.2and TableB.3can be formulated as follows. From the simulation-
quality point of view, the Ranlux Generator positioned itself in leading position. It gained
first/second places in four out of six test cases. Only for the“Diff” distribution Ranlux
Generator produces poor results compared to the remaining RNGs. Furthermore, as LCG
produced worst results in five out of six test cases, it clearly can be seen as the RNG with
the poorest simulation quality in our testing environment.Although the simulation quality
middle-ranked RNGs aren’t clearly distinguishable, one can detect some trends there. LFG
obtains position three with most stability, whereas ILCG shows the biggest difference in po-
sitioning through the whole test cases. Twister can mostly be found around places four to
five, CLCG and Tausworthe mostly show up on places four to six.Summarized, no clear
ordering can be found for the middle-ranked RNGs.

B.3.2 Exponentially Distributed Random Numbers

A brief summary of the obtained results can be found in TableB.4.

Position Speed Simulation Quality

1. CLCG Ranlux

2. LFG LFG
Twister Twister

Tausworthe CLCG
LCG Tausworthe
ILCG ILCG

LCG
3. Ranlux

Table B.4: Exponentially distributed random variables
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Run time

The time needed for generating10.000.000 random values for the considered RNGs on cor-
responding distributions is provided in FigureB.3. The quality of every RNG on every
distribution is summarized in TableB.5.
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Figure B.3: Run time: Exponentially distributed random variables

P
os

.

λ
0.01 0.1 0.5 1.0 5.0 10.0

1 CLCG Twister CLCG CLCG CLCG CLCG
2 LFG CLCG LFG LFG LFG Twister
3 ILCG Tausworthe Twister LCG LCG LCG
4 Twister LFG LCG Twister Twister ILCG
5 LCG ILCG ILCG Tausworthe Tausworthe Tausworthe
6 Tausworthe LCG Tausworthe ILCG ILCG LFG
7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.5: Run time: Exponentially distributed random variables

Having a closer look at FigureB.3and TableB.5, the results can be formulated as follows.
From runtime point of view CLCG can be seen as the winner over all considered RNGs.
In five out of six test cases it was placed first, for the sixth case CLCG was placed second.
When looking at pure runtime, Ranlux Generator again showedthe worst performance of all
RNGs and all test cases examined. The middle-ranked RNGs canbarely be ordered. ILCG
and Tausworthe Generator shows poor performance relatively to the remaining RNGs, in
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most of the test cases, closely followed by CLG. Thus LFG and Twister position themselves
at positions two and three, with LFG producing slightly better results.

Sums of errors

The sum of errors for the considered RNGs on corresponding distributions is provided in
FigureB.4. The quality of every RNG on every distribution is summarized in TableB.6.
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Figure B.4: Sums of errors: Exponentially distributed random variables

P
os

.

λ
0.01 0.1 0.5 1.0 5.0 10.0

1 Ranlux LFG ILCG ILCG Ranlux LFG
2 LCG LCG Ranlux LCG LFG Twister
3 ILCG Ranlux Tausworthe CLCG Twister ILCG
4 CLCG Tausworthe Twister Tausworthe LCG Ranlux
5 Twister CLCG CLCG LFG CLCG LCG
6 Tausworthe ILCG LCG Ranlux Tausworthe CLCG
7 LFG Twister LFG Twister ILCG Tausworthe

Table B.6: Sums of errors: Exponentially distributed random variables

The results of FigureB.4and TableB.6 are hard to summarize by giving an exact ordering
on the considered RNGs. Tausworthe Generator, as well as CLCG, show (at least for the
middle- to low-ranked positions) some kind of stability on places four to six for Tausworthe
Generator and places three to six for CLCG respectively. Concerning the leading positions,
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Ranlux is the only RNG showing durable behavior on position one to three in four out of the
six test cases. The remaining RNGs – namely LFG, LCG, ILCG andTwister – permanently
change positions with being in first place for one test case, but already in last place for
another. As no clear tendency could be observed here, we obtain a large field of middle-
ranked RNGs for the simulation quality tests.
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C CTMC Steady State Simulation

This appendix describes two heuristics applied to the steady-state simulation algorithms im-
plemented in MRMC, see Section8 and also Part II of [Zap08]:

1. Speeding up the regeneration method on larger models.

2. Optimising the frequency of computing confidence intervals on smaller models.

The positive effect of using both of these heuristics, in case of model checking steady-state
properties on CTMCs, has solid experimental evidences, seee. g. [KZ09].

C.1 Heuristic Regeneration Point

Our experiments revealed that, in case of large Markov chains, steady-state simulations can
take very long time. The main problem lies within the regeneration method [CL77] used
for data collection and analysis:On large ergodic models (≥ 1.000 states) regeneration
cycles typically need a lot of time to be complete. The problem can be relaxed by finding a
regeneration point that allows for shorten regeneration cycles.

In the present state of the art, finding an optimal regeneration point is an unsolved re-
search problem [CL77]. Thus, we have chosen several available heuristics and performed an
experimental evaluation of their performance using various case studies.

Heuristic Description

1. pure regeneration method the state with the lowest index in every BSCC
2. highest ingoing rate the state with highest ingoing rate
3. lowest rate difference the state with the lowest difference between in-

and outgoing rate
4. sample-based approach the most visited state after foregoing sampling
5. dynamic approach dynamic regeneration state, i.e. choose a new

regeneration state (randomly/sorted by rate etc.)
after every completed cycle

Table C.1: Regeneration state choice heuristics

According to our results, see FigureC.1, thesample-based approachprovides the best
results regarding the cycle length and the overall performance. On the figure, the plot corre-
sponding to this technique is named:static, sample-based.

MRMC implements thesample-based approachby selecting the regeneration point for
each BSCCBi to be the most recurring state in a test simulation run of length 3 × |Bi|. At
present, MRMC has this heuristic enabled by default.
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Figure C.1: Runtime: dynamic and static regeneration points

C.2 Heuristic Sample-size Steps

On small ergodic models,≤ 1.000 states, regeneration cycles are pretty small. This leads
to a very frequent re-computation of the confidence intervals that becomes a computational
bottleneck and leads to long model-checking times.

The effect can be discounted if in regeneration simulationswe use a “dynamic” sample-
size increase. We (successfully) used the following formulae for the minimal sample size
used in simulations:

N s
min :=

√
T

B

and the sample-size step:

∆N s := T/

(
L

B × N s

)
+ N s

whereN s – the current sample size during the regeneration simulation; N s
min – the minimal

sample size to consider;∆N s – the delta to increase the sample size before recomputing
the confidence interval;L – #states visited during regeneration simulation;B - #(simulated
BSCCs), i. e. reachable non-trivial BSCCs withG states;T - #states in simulated BSCCs.
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