
Manual

MARKOV REWARD

MODEL CHECKER

Version 1.5

January 12, 2011

Authors:
Ivan S. Zapreev

Christina Jansen

Contents

1. Introduction 2

2. MRMC tool description 5

3. Building MRMC 9

3.1. Building MRMC from source code . 9

3.1.1. Getting & Installing GSL . 9

3.1.2. Linux . 10

3.1.3. Windows . 10

3.1.4. Mac OS X . 10

3.1.5. Getting & Using Splint . 10

3.2. Getting & Installing Test Suite . 11

3.2.1. Configuring tests . 11

4. MRMC’s Input Files 13

4.1. The .tra File Format . 13

4.2. The .lab File Format . 13

4.3. The .ctmdpi File Format . 14

4.4. The .rew File Format . 15

4.5. The .rewi File Format . 15

4.6. Getting MRMC models . 15

4.6.1. PRISM . 16

4.6.2. Performance Evaluation Process Algebra (PEPA) 17

2

5. Running MRMC 18

5.1. Command line options . 18

6. MRMC run-time Commands 19

6.1. Basic Commands . 19

6.1.1. help . 19

6.1.2. help logic . 20

6.1.3. help simulation . 20

6.1.4. help rewards . 22

6.1.5. help common . 22

6.1.6. print . 23

6.2. Advanced Commands . 24

6.2.1. Common . 24

6.2.2. Numerical Methods . 25

6.2.3. Simulation . 25

6.2.4. Rewards . 28

7. Property Specification with Temporal Logics 29

7.1. Common-logic subset . 29

7.1.1. State formulae (SFL) . 30

7.1.2. Path formulae (PFL) . 30

7.2. PCTL . 30

7.3. PRCTL . 31

7.4. CSL . 31

7.5. CSRL . 32

8. Model Checking by Discrete Event Simulations 33

8.1. Confidence intervals and model checking 34

8.1.1. Simple problem . 34

8.1.2. Using confidence intervals . 34

8.1.3. Solving the problems . 35

8.2. Simulation engine . 35

3

9. MRMC Test Suite 39

10.Contact 41

A. CTMDPI: Model examples 48

A.1. Markov decision processes . 48

A.1.1. Markov decision processes with internal non determinism 49

B. RNG Investigations 50

B.1. Random Number Generators . 50

B.1.1. Linear Congruential Generator (LCG) – prism 50

B.1.2. Improved LCG [PM88] (ILCG) – ciardo 51

B.1.3. Combined LCG [Sch95] (CLCG) – app crypt 51

B.1.4. Mersenne Twister [MN98] (Twister) – ymer 51

B.1.5. RNGs from GSL [PtFSF07b] . 51

B.2. Experimental setup . 52

B.2.1. Non-Uniform Discrete Random Variables 52

B.2.2. Exponentially Distributed Random Variables 53

B.3. RNG comparison - results . 54

B.3.1. Non-Uniformly Random Numbers 54

B.3.2. Exponentially Distributed Random Numbers 57

C. CTMC Steady State Simulation 61

C.1. Heuristic Regeneration Point . 61

C.2. Heuristic Sample-size Steps . 62

D. Partition refinement and sparse matrices in MRMC 1.5 63

D.1. Partition data structure . 64

D.2. Optimal sorting . 66

D.2.1. Optimal time bound . 66

D.2.2. Adapting quicksort for equal keys to splitting 66

D.3. Sparse matrix data structure . 67

1

1. Introduction

Model checking is an automated technique that establishes whether certain qualitative prop-
erties such as deadlock-freedom or request-response requirements (“does a request always
lead to a response?”) hold in a model of the system under consideration. Such mod-
els are typically transition systems that specify how the system can evolve during execu-
tion. Properties are usually expressed in temporal extensions of propositional logic, such as
CTL [CES86].

In the last years adapting model checking to probabilistic systems has been a rather ac-
tive research field. This has resulted in efficient algorithms for model-checking DTMCs
and CTMCs, as well as Markov decision processes (MDPs), that are supported by several
tools nowadays such as E `MC2 [HKMKS00], PRISM [HKNP06], GreatSPN [BDH00],
VESTA [SVA05], Ymer [You05b], and the APNN Toolbox [BFKT03]. Various case studies
have proven the usefulness of these model checkers. Popular logics are Probabilistic CTL
(PCTL) [HJ94] and Continuous Stochastic Logic (CSL) [BHHK03].

Although these model checkers are able to handle a large set of measures of interest, the
reward-based measures have received scant attention so far. Markov Reward Model Checker
(MRMC) allowes for verification of Markov reward models (MRMs), in particular DMRMs
and CMRMs. These are the underlying semantic models of various high-level performance
modelling formalisms, such as reward extensions of stochastic process algebras, stochastic
reward nets, and so on.

MRMC [KZH+09], see also [JKO+07, KZ09], supports the following types of probabilis-
tic models:

• Discrete time Markov chains (DTMCs)

• Continuous time Markov chains (CTMCs)

• Discrete time Markov Reward models (DMRMs)

• Continuous time Markov Reward models (CMRMs)

• Continuous time Markov decision processes (CTMDPIs1)

Hence, MRMC supports Probabilistic Computation Tree Logic (PCTL) and Continuous
Stochastic Logic (CSL) for property specification as well as their reward extensions Proba-
bilistic Reward Computation Tree Logic (PRCTL) and Continuous Stochastic Reward Logic
(CSRL). Table 1.1 provides correspondence between the before-mentioned logics and the
supported models.

For PCTL the realized algorithms are mostly discussed by Hansson and Jonsson in [HJ94].
The exception is a long-run operator which is handled similar to the steady-state operator of

1Here, I stands for the internal non-determinism.

2

DTMC CTMC DMRM CMRM CTMDPI
PCTL +
CSL + + a

PRCTL +
CSRL +

aThere is currently no support for the steady-state and unbounded-time reachability properties.

Table 1.1.: The supported models and the corresponding logics

CSL. The supported algorithms for PRCTL have been described by Andova et al. [AHK03].
Model-checking techniques for CSL (on CTMCs) are derived from [BHHK03] and for its
reward extension CSRL from [CKKP05] (see also [BHHK00, HCH+02]). For the latter one
we have implemented two algorithms for time- and reward- bounded until formulae. One is
based on discretization [TV00] and another on uniformization and path truncation [QS96].
The algorithms for PRCTL and CSRL support both state and impulse rewards. Model-
checking of CSL (on CTMDPIs) implements procedures described in [BHKH05, BHH+06,
BFK+09].

It is important to note that the model-checking procedures integrated in MRMC were com-
plemented with the following extensions that are aimed at improving the tool’s performance
and accuracy:

Steady-state (long-run) operator of CSL (PCTL). For the operator S./ b (Ψ) the al-
gorithmic improvement lies with searching only for BSCCs that can contain Ψ states, as
opposed to searching for all BSCCs. The modification that was done to the model-checking
algorithms is straightforward and therefore we do not explain it in further details.

Unbounded-until operator of CSL (PCTL). For model checking P./ b (Φ U Ψ), we
first exclude states, using graph reachability analysis, from which Ψ states are always or
never reachable. Then the model checking procedure for the remaining states is carried out
as usual. All techniques required for this improvement are described in [CG04].

Time-bounded until operator of CSL. We have implemented a uniformization pro-
cedure [BHHK03] with a precise on-the-fly steady-state detection which is discussed in
[KZ05, KZ06]. Similar to unbounded-until operator, the technique of [CG04] is employed to
detect and remove states from which the Ψ states are never reached. Also we employ ideas,
described in [KKNP01], that allow to compute the reachability probabilities for all initial
states at once.

Bisimulation minimization. The bisimulation minimization algorithms have been real-
ized for PCTL, CSL, PRCTL and CSRL, in the latter two cases without impulse rewards.
For more details consider [KKZJ07].

Model checking by discrete event simulation. We developed and implemented al-
gorithms for model-checking CSL properties by simulation of finite-state CTMCs. Our

3

approach is based on Monte Carlo simulation and derivation of confidence intervals. We
provide statistical algorithms for model checking the most interesting CSL operators, such
as steady-state, unbounded-reachability, and time-interval reachability operators. For more
details we refer to [Zap08, KZ09].

The remainder of the manual is organized as follows. In Chapter 2 we discuss platforms
supported by MRMC, the implementation language and licensing. Further, we illustrate
the tool usage and introduce a snapshot of MRMC architecture via simple examples. The
next chapter, Chapter 3, explains the installing process of the tool. The input-file formats of
MRMC are discussed in Chapter 4. Chapter 5 is devoted to command-line options provided
by the tool, while in Chapter 6 a list of all available MRMC commands and run-time options
is given. The semantics of all supported logics are introduced in Chapter 7 and afterwords
information about model checking by means of simulation is given in Chapter 8. Chapter 9
speaks about MRMC’s test suite, while Chapter 10 concludes with the list of groups involved
in the MRMC development and the corresponding contact information.

4

2. MRMC tool description

MRMC [KZH+09] is a command-line tool that supports an easy input format and is real-
ized in the C programming language. The latter allows the tool to be small and fast due
to compiler-based optimisations and smart memory management within the implementa-
tion [JKO+07]. Also, MRMC uses simple but high-performance data structures, such as: a
slightly modified version of the well-known compressed-row, compressed-column represen-
tation of probability (rate) matrices, and bit vectors for representing sets of states.

Since MRMC v1.2.2 the tool supports all major platforms, namely Microsoft Windows,
Linux and Mac OS X. The tool is distributed under the GNU General Public License (GPL)
[PtFSF07a] and is available for free download at:

http://www.mrmc-tool.org/

Figure 2.1.: Tool architecture of MRMC

A sketch of the MRMC tool architecture is provided in Figure 2.1. Below we refer to it
for illustration purposes when giving examples of MRMC inputs, outputs and functionality.

5

http://www.mrmc-tool.org/

1

3

2 5

4

0.2

1.0

1.0

0.1

0.4

1.0

0.3

1.0

{loss} {goal}

[4][1]

[2] [3]

Figure 2.2.: The die game: DMRM model

Example 1 Consider a die with only four wedges that have numbers 1, 2, 3 and 4 imprinted
on them. Let the die be biased in such a way that we get the before-mentioned outcomes with
probabilities 0.4 0.3, 0.2 and 0.1, respectively. One can now play a simple game where the
game round consists of continuously tossing the die until winning, if the outcome is 4 and the
accumulated outcome is from 5 to 50, or losing, if the outcome is 1.

A natural question rises: Is the probability to win this game, e.g. within 100 tosses, larger
than 0.5? The answer to such a question can be given if we represent this game as a DMRM
model and reformulate the question in terms of the PRCTL logic.

The required DMRM is provided in Figure 2.2. Here we have five states where state 1
represents the moment at which the die is tossed and states from 2 to 5 correspond to the die
outcomes from 1 to 4. These outcomes are transformed into state rewards and placed next to
the states in the square braces. The loss and goal states are marked by labels enclosed in the
curly braces. The goal label corresponds to the outcome 4 and in order to win, by reaching
this state, the accumulated outcome has to be within 5 and 50.

The measure-of-interest can be formulated as: P>0.5

(
¬loss U

[0,199]
[5,50] goal

)
. The given

property asserts that the probability to reach the goal state, without visiting the loss state
within 199 time steps, and the accumulated reward being from 5 to 50, is larger than 0.5.
Notice that we have the upper time bound 199 that in the model corresponds to 100 die
tosses.

On the start up, MRMC accepts several command-line options, e.g., that specify the model
(CTMC, DTMC, etc.), and expects five input files: a .tra – file describing the probability
or rate matrix of a DTMC, CTMC or an MRM, a .lab – file indicating the state labelling
with atomic propositions, a .ctmdpi – file describing the rate matrix and the transition
labelling of a CTMDPI, a .rew – file specifying the state-reward structure of an MRM,
and a .rewi – file specifying the impulse-reward structure of an MRM. For all supported
model types either the .tra or .ctmdpi and .lab files are compulsory, whereas .rew
and .rewi files are used only for specifying reward models.

Example 2 The DMRM model of Example 1 can be seen as a superposition of three parts:
(i) the DTMC given by state-transitions and corresponding distributions, (ii) the labelling

6

function that maps sets of labels to the DTMC states, and (iii) the state-reward function
that maps reward values to the DTMC states. In order to be used with MRMC, all these
three parts have to be transformed into the MRMC input files. Such a translation is given in
Table 2.1.

The game.tra file contains an intuitive text-based representation of the DTMC, i.e. its
state transitions and corresponding probabilities. The game.lab file contains label decla-
rations and maps sets of labels to the states of DTMC. Similarly the game.rew file contains
mapping of the state rewards to the model states.

In order to start MRMC with the given input files the following command should be ex-
ecuted in a shell environment such as csh, bash on Linux (Mac OS X), or Dos command
prompt on Microsoft Windows:

MRMC/bin> mrmc dmrm game.tra game.lab game.rewi

When executed, this command starts MRMC by triggering several of its components, see
Figure 2.1. First “Options analyzer” parses the command-line arguments, setting up the
DMRM model as the current one in the “Runtime settings” component and invoking “Input-
file reader” for processing the files game.tra, game.lab and game.rewi. At this stage nec-
essary data structures for storing the probability matrix are provided by “Internal-data
storage”, labelling and state rewards, which then become accessible through “Runtime set-
tings”. Once MRMC is started it produces the following output:

| Markov Reward Model Checker |
| MRMC version 1.4.1 |
| Copyright (C) RWTH-Aachen, 2006-2009. |
| Copyright (C) The University of Twente, 2004-2008. |
| Authors: |
| Ivan S. Zapreev (since 2004), Christina Jansen (2007-2008), |
| David N. Jansen (since 2007), E. Moritz Hahn (2007-2008), |
| Sven Johr (2006-2007), Tim Kemna (2005-2006), |
| Maneesh Khattri (2004-2005) |
| MRMC is distributed under the GPL conditions |
| (GPL stands for GNU General Public License) |
| The product comes with ABSOLUTELY NO WARRANTY. |
This is a free software, and you are welcome to redistribute it.

Logic = PRCTL
Loading the ’simple_dmrm_dice.tra’ file, please wait.
States=5, Transitions=8
Loading the ’simple_dmrm_dice.lab’ file, please wait.
Loading the ’simple_dmrm_dice.rew’ file, please wait.
The Occupied Space is 992 Bytes.
Type ’help’ to get help.
>>

where, first the MRMC logo is printed, then some general information about the accepted
model and finally the MRMC shell invitation sign >>. After that the tool is up and running,
ready to accept user commands.

Once started, MRMC provides a shell-like environment (a command prompt) where the
user can specify the tool run-time options, such as a use of certain algorithms, and the prop-
erties that have to be verified. For every verification problem the tool outputs a set of states

7

that satisfy the given property and, if applicable, the list of probabilities. Note that the com-
plete list of MRMC command-line options and command-prompt commands can be found
in Chapter 6.

game.tra game.lab game.rew
STATES 5 #DECLARATION 2 1
TRANSITIONS 8 loss goal 3 2
1 2 0.4 #END 4 3
1 3 0.3 2 loss 5 4
1 4 0.2 5 goal
1 5 0.1
2 1 1.0
3 1 1.0
4 1 1.0
5 1 1.0

Table 2.1.: The die game: MRMC input files

Example 3 Extending Example 2, we can answer to the model checking problem of Exam-
ple 1, by executing the following command in the MRMC command prompt:

>>P{>0.5}[!loss U[0,199][5,50] goal]
$RESULT: (0.0647999, 0.0000000, 0.0959998, 0.1199998, 0.1199997)
$STATE: { }
The Total Elapsed Model-Checking Time is 45 milli sec(s).
>>

By doing so we invoke the “Command-prompt interpreter” component, cf. Figure 2.1, that
processes all commands of the MRMC shell. This component, using “Runtime settings” de-
termines which model-checking engine is needed, in this case it is “PRCTL model checking”,
and then invokes it. As a result, we get two outputs: a probability vector $RESULT, and a set
of states $STATE. The former corresponds to the list of probabilities to satisfy the formula
¬loss U

[0,199]
[5,50] goal when starting in the first, second, etc. states. The latter one is the set of

states in which the formula P>0.5

(
¬loss U

[0,199]
[5,50] goal

)
is satisfied.

Since, when playing the die game, we always start in state 1, i.e. we first toss the die, from
the vector $RESULT we can see that the probability to win the game within 100 die tosses is
just 0.0647999 and thus indeed 1 is not in the set $STATE.

Since we already have a good idea of how MRMC works, we proceed with concrete
information on the tool installation process. The die example from above will be referenced
in the upcoming chapters to illustrate the tool functionality.

8

3. Building MRMC

This chapter is devoted to the installing process of MRMC and all related components.
MRMC can be freely downloaded from:

http://www.mrmc-tool.org/

Further, we first explain how to build MRMC on the supported platforms. After that we
proceed with a section on getting and configuring the optional MRMC test suite, which is
useful for internal, functional and performance testing of the tool.

3.1. Building MRMC from source code
To compile MRMC from sources GNU Make as well as GCC is needed. Additionally, com-
pilation under Windows requires Cygwin.

• http://gcc.gnu.org/

• http://www.cygwin.com/

3.1.1. Getting & Installing GSL
Since MRMC v1.3, the tool requires the GNU Scientific Library (GSL), a collection of
numerical routines for scientific computing. The current version of GSL is available at:

ftp://ftp.gnu.org/pub/gnu/gsl

GSL follows the standard GNU installation procedure. Brief installing instructions can be
found here, for further information on this topic see [PtFSF07b].

Note that, in order to install GSL on Windows you are first required to install Cygwin and
then to perform GSL installation procedure using the Cygwin shell. For more details see
Section 3.1.3.

First, unpack the GSL distribution file into the location of your choice, enter that directory
and prepare the Makefiles by using the configure command. Afterwords run make to compile
and make install to install the library. On most systems the latter will require root privileges.

$ tar -xf gsl-1.9.tar.gz
$ cd gsl-1.9
$./configure
$ make
$ sudo make install

Further we assume that GSL is properly installed on your system.

9

http://www.mrmc-tool.org/
http://gcc.gnu.org/
http://www.cygwin.com/
ftp://ftp.gnu.org/pub/gnu/gsl

3.1.2. Linux
To build MRMC on Linux unpack the distribution into the location of your choice. We define
MRMC_HOME_DIR to be the absolute name of the MRMC distribution folder. After MRMC
is unpacked, enter this directory and run make all.

$ unzip mrmc_src_v1.3.zip
$ cd MRMC_HOME_DIR
$ make all

After that you will find the MRMC executable in the folder MRMC_HOME_DIR/bin. Note
that you might have to modify Makefile.def, depending on your system’s configuration.
Please check the settings there if make all fails.

In order to clean up distribution, i.e. to remove all object files and pre-compiled binaries
run make clean.

3.1.3. Windows
To build MRMC on Windows first download and install Cygwin

http://www.cygwin.com

Make sure that ’gcc’, ’make’, ’yacc’ (’bison’) and ’lex’ (’flex’) modules are included. Ensure
that the absolute name of the MRMC distribution folder does not contain spaces.

In the next step install the GNU Scientific Library (GSL) as described in Section 3.1.1 and
then proceed with the installation steps specified in Section 3.1.2. Ensure that all commands
are executed within the Cygwin shell.

3.1.4. Mac OS X
To build MRMC on Mac OS use the instructions of Section 3.1.2.

3.1.5. Getting & Using Splint
Some source files are annotated for the static checker splint (see http://www.splint.org).
Splint checks a. o. for null pointer assignments, memory leaks, and safety of #define
macros. Splint can be downloaded from its homepage and installed according to the instruc-
tions found there.

Splint can be used as follows:

Check a single source file: To check, e. g., bitset.c (currently the only annotated file):

$ cd MRMC_HOME_DIR/obj
$ make lint-bitset

One has to run make lint-filename in the directory MRMC_HOME_DIR/obj in-
dependently from the directory where the source file is located.

10

http://www.cygwin.com
http://www.splint.org

Check all source files: Currently, this will incur a lot of error messages, as not yet all
sources have been annotated.

$ cd MRMC_HOME_DIR
$ make lint

Check the test suite sources: Internal tests (see below) also have source files. As the
test suite is not packaged together with the source installation, there is an independent
way to check the test suite sources:

$ cd MRMC_HOME_DIR/test
$./test_all.sh -lint -internal

will run splint on all annotated internal tests, compile the sources and run the internal
tests.

3.2. Getting & Installing Test Suite
The test-suite allows to perform internal, functional and performance testing of MRMC. It is
not distributed with the MRMC sources, but it can be freely downloaded from:

http://www.mrmc-tool.org/

After downloading the MRMC test v1.3.zip file, unpack it in the MRMC folder. As
a result a directory MRMC HOME DIR/MRMC test v1.3/ will be created. Further, for
brevity, we assume that you rename it into MRMC HOME DIR/test/.

3.2.1. Configuring tests
The main configuration parameters of the MRMC test-suite can be set in the

MRMC HOME DIR/test/settings.cfg

configuration script. These parameters are subdivided into two groups:

General settings

• MRMC HOME DIR - The absolute name of the MRMC distribution directory.

• MRMC - The location of the MRMC binary. This setting does not need to be changed if
MRMC HOME DIR is set correctly. Note that, when running MRMC on Windows, the
binary name should be set to mrmc.exe.

• VALGRING HOME - The absolute path to the valgrind executable [ABFH+08].
It is only required if tests are run under the -valgrind option. Note that in this
case MRMC should be first recompiled with the -O0 -ggdb -g options, which are
available in MRMC HOME DIR/makefile.def.

• VALGRIND LOG FILES DIR - The absolute name of the folder for storing log filed
produced by valgrind.

• EXTRA VALGRIND PARAM - Extra options for valgrind.

11

http://www.mrmc-tool.org/

Performance-test settings The performance part of the test suite was developed for
Linux platform only. It is not proven to work under Windows or Mac OS X.

• PRISM - The absolute path of the PRISM [KNP02] command line executable. This
setting is required for generating performance-test models.

• TMPDIR - This setting should point to a local directory, which will be used for storing
generated models.

• YMER - The absolute path of the Ymer [You05b] command line executable2.

• VASTA JAR - The absolute path of the VESTA [SVA04] jar file2.

• NUMBER OF PERFORMANCE REPETITIONS - The number of times every perfor-
mance test is going to be repeated. If set to zero, no “elapsed-time” statistics is col-
lected. At the same time the functional testing and the memory-usage statistics are
collected only for the lumping sub suite.

• MILLISECONDS - The time units of the “elapsed-time” plots.

• KILOBYTES - The data units of the “memory-usage” plots.

• CONFUNIT- The data units of the “confidence” plots2.

• PERFORMANCE TEST TIMEOUT SECS - The timeout (in seconds) for each perfor-
mance test invocation.

For more information on the MRMC test suite, we refer to Chapter 9 and also to the test-suite
manual: MRMC_HOME_DIR/test/TS_Manual.pdf.

2This setting is required only for the simulation sub suite.

12

4. MRMC’s Input Files

As already mentioned in Chapter 2 MRMC expects five input files: a .tra – file describing
the probability or rate matrix of a DTMC, CTMC or an MRM, a .lab – file indicating the
state labeling with atomic propositions, a .ctmdpi – file describing the rate matrix and the
transition labeling of a CTMDPI, a .rew – file specifying the state-reward structure, and a
.rewi – file specifying the impulse-reward structure. For all supported model types either
the .tra or the .ctmdpi and .lab files are compulsory, whereas .rew and .rewi files
are used only for specifying reward models.

Here we would like to give a formal definition of the structure the input files should meet.
Please note, that MRMC does not check if the input is in a proper format and thus
may show malicious behavior in case of a wrong input. For examples of MRMC’s input
files see Table 2.1 of Chapter 2. Additionally, examples for CTMDPIs can be found in
Appendix A.

4.1. The .tra File Format
The .tra file contains the rate (probability) matrix:

File structure:

Tra_File = Header Body
Header = ’STATES’ <number of states> \n

’TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <rate/probability> \n

Body
| <from state> <to state> <rate/probability> \n

The header defines the number of states and transitions in the system. The body contains
transitions in the format:

<from state> <to state> <rate/probability>

Note that, “from state” and “to state” should be given as natural numbers, the rates/probabil-
ities as real numbers. State indexes start with 1 and transitions must be given in ascending
order of first row and then column index.

4.2. The .lab File Format
The .lab file contains the labeling of states with atomic propositions.

13

File structure:

Lab_File = Declaration Body
Declaration = ’#DECLARATION’ \n

Atomic_Prop_List \n
’#END’ \n

Body = <state> Atomic_Prop_List \n Body
| <state> Atomic_Prop_List \n

Atomic_Prop_List = <atomic proposition> Atomic_Prop_List
| <atomic proposition>

In the declaration section all needed atomic propositions must be defined. We allow quite
complicated atomic propositions, namely the ones that fit the following regular expression:

<atomic proposition> = {let}{alnum}*
let = [_a-zA-Z]
alnum = [_a-zA-Z0-9<>_ˆ*+-=]

The propositions are assigned to states in the following manner:

<state> Atomic_Prop_List

4.3. The .ctmdpi File Format
The .ctmdpi file contains the rate matrix and additionally the transition labeling to distin-
guish between different non-deterministic choices. The file format for the transition descrip-
tions are given below.

File structure:

Ctmdpi_File = Header Body_Int_Nondet
Header = ’STATES’ <number of states> \n

’#DECLARATION’ \n
Atomic_Prop_List \n
’#END’ \n

Body_Int_Nondet = <from state> <label> \n

* <to state> <rate> \n
{ * <to state> <rate> } \n
Body_Int_Nondet

| <from state> <label> \n

* <to state> <rate> \n
{ * <to state> <rate> } \n

The header defines the number of states the MDP contains as well as all needed transition
labels, which are used to label the non-deterministic decisions.

The body contains the transitions and transition labels, where “from state” is the state the
the selection starts from and “label” is the external choice that was made. After this line, a
number of lines follow, which list the states “to state” one can go to with rate “rate”.

14

Note that, “from state” and “to state” should be given as natural numbers, the rates/proba-
bilities as real numbers. State indexes start with 1 and transitions must be given in ascending
order of first row and then column index.

4.4. The .rew File Format
The .rew file contains the state-reward definitions.

File structure:

Rew_File = Body
Body = <state> <reward> \n Body

| <state> <reward> \n

Note that, only natural reward values are allowed, therefore any rational rewards must (and
can) be transferred into natural numbers first.

4.5. The .rewi File Format
The .rewi file contains the impulse-reward definitions.

File structure:

Rewi_File = Header Body
Header = ’TRANSITIONS’ <number of transitions> \n
Body = <from state> <to state> <reward> \n Body

| <from state> <to state> <reward> \n

In the header the number of transitions is given, the body contains reward to transition
assignments in the format:

<from state> <to state> <reward>

Note that, “from state” and “to state” should be given as natural numbers. Furthermore, like
for the .rew file only natural reward values are allowed.

4.6. Getting MRMC models
Specifying a whole model in the formats explained above is not very intuitive especially
for large systems. Therefore in this section we introduce two tools – namely PRISM and
PEPA – that offer a clearly defined language for designing models. Both of them feature the
automatic generation of MRMC input files.

15

4.6.1. PRISM
PRISM [KNP08b] stands for Probabilistic Symbolic Model Checker and is being developed
at the University of Birmingham, United Kingdom, for the analysis of probabilistic systems.

MRMC models can be generated from PRISM models starting from the tool version 3.0.
PRISM can be downloaded from:

http://www.prismmodelchecker.org/download.php

The model-generation options of PRISM are listed here and can also be obtained by running
prism -help:

• –exportmrmc - Use MRMC format when exporting matrices/vectors/labels.

• –exportlabels <file> - Export the list of labels and satisfying states to a .lab-file.

• –exporttrans <file> - Export the transition matrix to a .tra-file.

• –exportstaterewards <file> - Export the state rewards vector to a .rew-file.

• –exporttransrewards <file> - Export the transition rewards matrix to a .rewi-file.

Example 4 Consider Example 2 of Chapter 2. The DMRM model given in Figure 2.2 can
be specified as the following PRISM model:

--------------------------- File: game.pm -------------------------------

probabilistic

module Dice

dice_state : [1..5] init 1;

[] dice_state=1 -> 0.4:(dice_state’=2) + 0.3:(dice_state’=3)
+ 0.2:(dice_state’=4) + 0.1:(dice_state’=5);
[] dice_state=2 -> 1.0:(dice_state’=1);
[] dice_state=3 -> 1.0:(dice_state’=1);
[] dice_state=4 -> 1.0:(dice_state’=1);
[] dice_state=5 -> 1.0:(dice_state’=1);

endmodule

rewards
dice_state=2 : 1;
dice_state=3 : 2;
dice_state=4 : 3;
dice_state=5 : 4;
endrewards

16

http://www.prismmodelchecker.org/download.php

--------------------------- File: game.pctl -----------------------------

label "loss" = dice_state=2;
label "goal" = dice_state=5;

In the file game.pm the DMRM model is specified, whereas the file game.pctl contains
only the state labellings.

To generate the MRMC model with PRISM, run the following command,

$ prism game.pm game.pctl -exportmrmc -exportlabels
game.lab -exporttrans game.tra -exportstaterewards game.rew

which produces the .tra, .lab and .rew input files shown in Table 2.1 of Chapter 2.
These files can be immediately consumed by MRMC.

For more information on generating MRMC models using PRISM see [KNP08b].

4.6.2. Performance Evaluation Process Algebra (PEPA)
Performance Evaluation Process Algebra (PEPA) [Hil96] is an algebraic process-oriented
language for modeling concurrent systems. The process algebra is being mainly developed
in Laboratory for Foundations of Computer Science, University of Edinburgh, United King-
dom. Performance of a PEPA model can be evaluated by deriving and analyzing the under-
lying CTMC. PEPA modelers are provided with the PEPA Workbench [TG06],

http://www.dcs.ed.ac.uk/pepa/tools/

an Eclipse-platform [Fou07] application for managing the models. One of the PEPA Work-
bench features is an Eclipse wizard for exporting PEPA models into the MRMC input-file
formats.

17

http://www.dcs.ed.ac.uk/pepa/tools/

5. Running MRMC

In order to start MRMC open a shell environment such as csh or bash on Linux and Mac OS
X, or Dos command prompt on Microsoft Windows and switch to MRMC HOME DIR.

5.1. Command line options
Starting MRMC without parameters

• for Linux/Max OS: $./bin/mrmc

• for Windows: $./bin/mrmc.exe

will yield the following output:

ERROR: The <model> parameter is undefined.
Usage: mrmc <model> <options> <.tra file> <.ctmdpi file> <.lab file> <.rew file>
<.rewi file>

<model> - could be one of {ctmc, dtmc, dmrm, cmrm, ctmdpi}.
<options> - could be one of {-ilump, -flump}, optional.
<.tra file> - is the file with the matrix of transitions

(for DMRM/CMRM, DTMC/CTMC).
<.ctmdpi file> - is the file with the transition matrix and transition labels

(for CTMDPI).
<.lab file> - contains labeling.
<.rew file> - contains state rewards (for DMRM/CMRM).
<.rewi file> - contains impulse rewards (for CMRM, optional).

Note: In the ’.tra’ and ’.ctmdpi’ file transitions should be ordered by rows and columns!

The model-parameter should be set to one of the supported models, namely CTMC,
DTMC, CMRM, DMRM and CTMDPI. Remember that the latter model is a CTMDP with
internal non-determinism, see Appendix A.

Options -ilump and -flump enable formula- independent and dependent lumping cor-
respondingly. For more information on lumping, please consider reading [KKZJ07].

We expect users to provide MRMC with the input files that meet the formats specified
in Chapter 4, for illustration see Example 2 on page 6. Note that, the order of input files,
options and other parameters does not have to be strict.

A complete list of all MRMC runtime commands, sorted by their affiliation to different
model checking aspects, can be found in the next chapter.

18

6. MRMC run-time Commands

Once started, MRMC provides a shell-like environment (a command prompt) where the user
can use the tool run-time commands to set for example the use of certain algorithms, or
specify the properties that have to be verified. Further we will list and discuss MRMC’s
command-prompt commands sorted by their affiliation to the different aspects of model
checking.

6.1. Basic Commands

6.1.1. help
When typing help in MRMC’s command prompt, information on general commands is
displayed:

quit - exit the program.
help HT - display a help info on a given topic.
print - print run-time settings.
print tree - print the formula tree with the results and supplementary

information.
$RESULT[N] - access the computed results of U, X, L, S, E, C, Y operators

by a state index.
$STATE[N] - access the state-formula satisfiability set by a state

index.
set * - Where * is one of the following:
print L - Turn on/off most of the resulting output, see

’$RESULT[I]’ and ’$STATE[I]’ commands.
simulation L - Turn on/off the simulation engine.

Here:
HT is one of {logic, simulation, rewards, common}.
L is one of {on, off}.
N is a natural number.

First we are going to explain the basic commands listed in this help output, the more
involved ones are covered in the subsequent sections.

quit – Exits the program.

help HT – For some terms a specialized help is available. See the description provided
for help logic, help simulation, help rewards and help common below.

19

print tree – Prints the tree of the last model-checked formula with all intermediate
results.

Note: The next two commands provide different output in case of using the discrete event
simulation engine. For more details we refer to Section 8.

$RESULT[N] – Allows to access the probability of satisfying the model-checked
formula in state N.

$STATE[N] – Displays whether state N satisfies the model-checked formula, i. e. for a
state fulfilling the formula the result is TRUE, otherwise FALSE.

6.1.2. help logic

The command help logic prints the formal syntax, given in Extended Backus-Naur Form
(EBNF), of the logic formulae accepted by MRMC. The output depends on the value of the
logic parameter with which MRMC was invoked. Figures 6.1 through 6.4 show outputs
for all available logics. These logics allow to specify model-checking properties, as it is done
in Example 3 on page 8. Additional information on the logic semantics and examples are
provided in Chapter 7.

6.1.3. help simulation

The help simulation command provides the user with all options related to MRMC’s
simulation engine:

set * - Where * is one of the following:
sim_type ST - Sets the simulation type, \ie{} either

do simulation for all initial states
or just one.

initial_state N - Sets the initial state for the simulation
type ST == one.

sim_method_steady MS - Sets the simulation mode for the
steady-state (long-run) operator.

reg_method_steady RM - Sets the mode for the regeneration method when
model checking the steady-state operator.

gen_conf R - The confidence level for simulation.
indiff_width R - The indifference-region width.
max_sample_size N - The maximum sample size.
min_sample_size N - The minimum sample size.
sample_size_step N - The sample-size increase step.
sample_size_step_type SS - Sets the sample-size step type.
sim_method_disc RNG - The random-number generator for a

discrete distribution.
sim_method_exp RNG - The random-number generator for an

exponential distribution
(time-interval until, CSL).

For the simulation of unbounded until and the pure simulation of
steady-state (long-run) operator:

max_sim_depth N - The maximum simulation depth.

20

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| (SFL)
| P{ OP R }[PFL]
| L{ OP R }[SFL]

PFL = X SFL
| SFL U SFL
| SFL U[N, N] SFL

Figure 6.1.: PCTL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| (SFL)
| P{ OP R }[PFL]
| E [R, R] [SFL]
| E [N][R, R] [SFL]
| C [N][R, R] [SFL]
| Y [N][R, R] [SFL]

PFL = X SFL
| SFL U SFL
| SFL U[N, N][R, R]

SFL

Figure 6.2.: PRCTL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| (SFL)
| P{ OP R }[PFL]
| S{ OP R }[SFL]

PFL = X SFL
| SFL U SFL
| X[R, R] SFL
| SFL U[R, R] SFL

Figure 6.3.: CSL formulae

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| (SFL)
| P{ OP R }[PFL]
| S{ OP R }[SFL]

PFL = X SFL
| SFL U SFL
| X[R, R] SFL
| SFL U[R, R] SFL
| X [R, R][R, R] SFL
| SFL U[R, R][R, R]

SFL

Figure 6.4.: CSRL formulae

21

min_sim_depth N - The minimum simulation depth.
sim_depth_step N - The simulation-depth increase step.
bscc_dim_multiplier N - The BSCC dimension multiplier for the

sample-based regeneration state choice.
Here:

RNG is one of {app_crypt, ciardo, prism, ymer, gsl_ranlux,
gsl_lfg, gsl_taus}.

ST is one of {one, all}.
SS is one of {auto, manual}.
MS is one of {pure, hybrid}.
RM is one of {pure_reg, heuristic}.
R is a real value.
N is a natural number.

For more information on the simulation options read Section 6.2.3. For details on the avail-
able Random Number Generators (RNGs) read Chapter 8.

6.1.4. help rewards

The command help rewards yields the following output:

set * - Where * is one of the following:
method_until_rewards MU - Method for time-reward-bounded until

formula.
w R - The probability threshold for

uniformization
Qureshi-Sanders.

d R - The discretization factor for
discretization Tijms-Veldman.

Here:
MU is one of { uniformization_sericola,

uniformization_qureshi_sanders,
discretization_tijms_veldman }.

R is a real value.

For more information on reward options listed above, we refer to Section 6.2.4.

6.1.5. help common

The help common command provides the user with information concerning options, re-
lated to all model-checking procedures and numerical methods. For detailed information on
these options, see Sections 6.2.1 and 6.2.2.

set * - Where * is one of the following:
ssd L - Turn on/off the steady-state detection for time

bounded until (CTMC model).
error_bound R - Error Bound for all iterative methods.
max_iter N - Number of Max Iterations for all iterative

methods.
overflow R - Overflow for the Fox-Glynn algorithm.
underflow R - Underflow for the Fox-Glynn algorithm.
method_path M - Method for path formulas.
method_steady M - Method for steady state formulas.
method_bscc MB - Method for BSCC search.

22

Here:
L is one of {on, off}.
R is a real value.
M is one of {gauss_jacobi, gauss_seidel}.
MB is one of {recursive, non_recursive}.

6.1.6. print
The print command displays the current status of all relevant run-time settings. A sample
output may look as follows:

---General settings:
Logic = PCTL
Formula ind. lumping = OFF
Formula dep. lumping = OFF
M. C. simulation = OFF
Method Path = Gauss-Seidel
Method Steady = Gauss-Seidel
Method BSCC = Recursive
Results printing = ON

---Numerical methods:
-Iterative solvers:

Error Bound = 1.000000e-06
Max Iterations = 1000000

A complete list of all runtime options and their correspondence to the print command
output can be found in Section 6.2. Below we describe the parameters listed in the output
above:

• General settings

– Logic – Corresponds to the logic parameter MRMC was invoked with (cf.
Chapter 5).

– Formula ind. lumping – Is related to the option -ilump MRMC was
invoked with (cf. Chapter 5).

– Formula dep. lumping – Is related to the option -flump MRMC was
invoked with (cf. Chapter 5).

– M. C. simulation – Corresponds to the command set simulation L
(cf. Section 6.2.3). With simulation enabled, the output of the print command
is extended.

– Method Path – Corresponds to the command set method path M (cf.
Section 6.2.1).

– Method Steady – Corresponds to the command set method steady M
(cf. Section 6.2.1).

– Method BSCC – Corresponds to the command set method bscc MB (cf.
Section 6.2.1).

23

– Results printing – Reports whether model checking results are printed.
In order to manage this option, use set print L (cf. Section 6.2.1).

• Numerical methods

– Error Bound – Corresponds to the command set error bound R (cf.
Section 6.2.2).

– Max Iterations – Corresponds to the command set max iter N (cf.
Section 6.2.2).

Note that, depending on specific run-time settings, the output of the print command may
be extended with additional information. For example, when the simulation engine is turned
on, the user is provided with information about its parameters as well.

6.2. Advanced Commands
In this section, we list the remaining MRMC commands that allow to influence its run-time
behavior. Every command will be given in the following format:

<command name> (related print output) – short description.

6.2.1. Common
Let us consider the MRMC commands responsible for managing the general behavior of
the tool. When displaying the current settings with the print command, all commands
described here can be found in the section General settings. Below we have L ∈
{on, off} and M ∈ {gauss jacobi, gauss seidel}.

set print L (Results printing) – Turns on/off printing of model-checking results
that follows the formula verification procedure.

set ssd L (Steady-state detection) – Turns on/off the steady-state detection for
the time-bounded until operator (CTMC/CMRM).

set method path M (Method Path) – Sets the iterative method for solving a
system of linear equations when computing reachability probabilities for model checking of
an unbounded-until formula (DTMC/DMRM and CTMC/CMRM).

set method steady M (Method Steady) – Sets the iterative method for solving
a system of linear equations when computing steady-state probabilities of BSCCs1. The lat-
ter happens when model checking the steady-state, long-run and unbounded-until formulas
(DTMC/DMRM and CTMC/CMRM).

1Bottom Strongly Connected Components

24

set method bscc MB (Method BSCC) – Sets the method used when searching
for bottom strongly connected components. Here MB defines the BSCCs search implemen-
tation based on:

• recursive – Recursive functions.

• non recursive – Cycle iterations.

Generally, the recursive method is faster, but can run into a segmentation fault caused
by an insufficient stack size (it is likely to happen for large models). The non recursive
method does not use recursive function calls, and thus avoids the stack exhaustion.

set method ctmdpi transient CB (CTMDPI Transient Method) – Sets
the method which is used to compute transient reachability for CTMDPIs. By default, this
value is set to hd auto. This means that for uniform CTMDPIs the method of [BHKH05] is
used, but for non-uniform CTMDPIs the method of [BFK+09] is taken. With hd non uni
the method of [BFK+09] can be enforced. Setting the value to hd uni leads to usage of
[BHKH05] for uniform CTMDPIs, but to failure for non-uniform models. This can be used
as an additional check, in case generated CTMDPIs are expected to be uniform.

6.2.2. Numerical Methods
In this section we list commands that allow to manage the numerical engine of MRMC. The
list of corresponding parameters can be found in the Numerical Methods section of the
print command output.

set error bound R (Iterative solvers/Error Bound) – Sets the error bound for
all iterative methods.

set max iter N (Iterative solvers/Max Iterations) – Sets the maximum number
of iterations for all iterative methods.

set overflow R (Fox-Glynn algorithm/Overflow) – Sets the overflow threshold
for the Fox-Glynn algorithm [FG88].

set underflow R (Fox-Glynn algorithm/Underflow) – Sets the underflow thresh-
old for the Fox-Glynn algorithm.

6.2.3. Simulation
In this section we list commands related to MRMC’s discrete-event simulation engine. At
present simulation can be used when model checking unbounded-until, time-bounded until,
and steady-state operators on CTMC/CMRM models. We do not support nested simulation.
Therefore, given a formula we only apply simulation to the (appropriate) sub formulas that
have the closest location to the formula-tree root. The sub-formulas that are located below
are verified using numerical methods.

25

∧

P≤p1
S>p2

P>p3

Figure 6.5.: Formula tree: P≤p1 (Ψ U Φ) ∧ S>p2 (P>p3 (Ψ′ U Φ′))

Example 5 Consider the formula P≤p1 (Ψ U Φ) ∧ S>p2 (P>p3 (Ψ′ U Φ′)) with the corre-
sponding formula tree depicted in Figure 6.5. The formula is a conjunction of the unbounded-
until formula P≤p1 (Ψ U Φ) and the steady-state formula S>p2 (P>p3 (Ψ′ U Φ′)). The latter
one has an unbounded-until sub formula. In the given situation MRMC applies numeri-
cal methods to verify sub formula P>p3 (Ψ′ U Φ′). Then the unbounded-until sub formula
P≤p1 (Ψ U Φ) and steady-state sub formula S>p2 (P>p3 (Ψ′ U Φ′)) are model checked using
simulations.

With simulation on, the print command output is extended with parameters of the sim-
ulation engine, cf. Example 6 of Chapter 8. These options are displayed in the Monte
Carlo Simulation section. Below, we assume that L ∈ {on, off} and N ∈ N.

set simulation L (M. C. Simulation) – Turns MRMC’s simulation engine
on/off. The status of simulation engine is reported under the General settings sub
point of the print command output.

set sim type ST (Simulation type) – Sets the simulation type ST ∈ {one,
all}. Unlike in numerical model checking, where verification is done for all initial sates at
once, in model checking via simulation we can either do verification for one initial state or
all initial states. The former can be set by using the set initial state N command,
described below.

set initial state N (Sim. initial state) – Sets the state for which the validity
of the formula is going to be verified.

set sim method steady MS (Sim. steady state) – Sets the simulation mode
for the steady-state/long-run operator. Here, MS is one of

• pure – Model checking only by discrete simulation.

• hybrid – Probabilities of reaching BSCCs are computed numerically.

set reg method steady RM (Reg. method steady) – Sets the regeneration
method for the steady-state operator. Here, RM is one of

• pure reg – Random choice of the regeneration state.

• heuristic – Use heuristic to choose a frequently visited regeneration state.

26

set gen conf R (Confidence level) – Sets the confidence level (probability) with
which we can trust the model-checking results. Here, R ∈ [0.25, 1.0]. Note that, this confi-
dence level is guaranteed only under a specific condition that is explained in Chapter 8.

set indiff width R (Indiff. reg. width) – Sets the width of the indifference
region, i. e. the maximum width of the confidence intervals that will be considered. For more
details see Chapter 8.

set max sample size N (Max sample size) – Sets the maximum sample size,
i. e. the maximum number of independent traces to be considered.

set min sample size N (Min sample size) – Sets the minimum sample size,
i. e. the minimum number of independent traces to be considered.

set sample size step type SS (Sample-size step type) – Sets the type
to determine the sample-size increment. Here, SS is one of

• auto – The sample size step is computed and dynamically set based on relevant fac-
tors.

• manual – The sample size step is static and manually set.

set sample size step N (Sample-size step) – Sets the increment for the
sample-size, i. e. the number by which the number of observations in the samples will be
increased, for sequential confidence intervals.

set sim method disc RNG (RNG discrete dist.) – Sets the method of gener-
ating values for discrete random variables (cf. Chapter 8). This method is used for simulating
state transitions of embedded DTMCs. The Random Number Generator RNG can be one of
the following:

• app crypt – Combined linear congruential generator.

• ciardo – Improved linear congruential generator.

• prism – Linear congruential generator, similar to the RNG used in PRISM.

• ymer – Mersenne Twister, similar to the RNG used in Ymer.

• gsl ranlux – Ranlux generator, GSL Library.

• gsl lfg – Lagged Fibonacci generator, GSL Library.

• gsl taus – Tausworthe generator, GSL Library.

set sim method exp RNG (RNG exponential dist.) – Sets the RNG for gen-
erating exponentially distributed random variables. This method is used for simulating ex-
ponentially distributed state-exit times. Here RNG ∈ { app crypt, ciardo, prism,
ymer, gsl ranlux, gsl lfg, gsl taus }.

27

Note: The following commands are used for managing options specific for the unbounded-
until operator.

set max sim depth N (Max simulation depth) – Sets the max. simulation
depth, i. e. the maximum number of steps in every simulated path.

set min sim depth N (Min simulation depth) – Sets the min. simulation
depth, i. e. the minimum number of steps in every simulated path.

set sim depth step N (Simulation-depth step) – Sets the increment for the
simulation-depth, i. e. the number of steps by which the simulation depth will be increased.

set bscc dim multiplier N (BSCC dim. multiplier) – Sets the multiplier
for the heuristic regeneration method. As the multiplier increases the heuristic regeneration
state choice is more likely to produce better results at the expense of runtime.

6.2.4. Rewards
set method until rewards MU (Method Until Rewards) – Defines the

method, that will be used for CSRL model checking of time- and reward-bounded until
formulae. Here, MU is one of:

• uniformization qureshi sanders - Uniformization Qureshi-Sanders [QS96]

• discretization tijms veldman - Discretization Tijms-Veldman [TV00]

• uniformization sericola - Not supported

set w R (Probability threshold) – Sets the path probability bound for Qureshi &
Sanders uniformization algorithm, i. e. only paths with path probability greater or equal to
the bound are considered significant relative to the solution.

set d R (Discretization factor) – Sets the discretization factor for time interval and
accumulated rewards in the discretization algorithm by Tijms & Veldman.

28

7. Property Specification with
Temporal Logics

Model checking is the process of checking whether a given model satisfies a given logical
formula. As MRMC is a probabilistic model checker, it supports the common logics for
specification of probabilistic properties, namely PCTL, PRCTL, CSL and CSRL. In this
chapter all the formulae accepted by MRMC will be introduced on the basis of EBNF. For a
property specification example, see Example 3 on page 8 or Examples 7 and 8 of Section 8.

PCTL and PRCTL as well as CSL and CSRL (cf. Section 6.1.2) share a set of common
formulae. Every logic only extends the set of these formulae. Note that in most cases MRMC
performs global model checking, i. e. properties are verified in every model state and the
states satisfying the given formula are reported. The exception is model-checking by discrete
event simulation, there it is possible to check the validity of the formula in just one given
state.

7.1. Common-logic subset
The common formulae are the following:

Common Semantics:

CONST = ff | tt
SFL = CONST

| LABEL
| ! SFL
| SFL && SFL
| SFL || SFL
| (SFL)
| P{ OP R }[PFL]

PFL = X SFL
| SFL U SFL

We distinguish between two types of formulae: state and path formulae. A state formula
SFL is interpreted over the states of the considered system and therefore results in a set of
states satisfied by the formula. A path formula PFL is interpreted over system paths and
thus for every given initial state results in a set of paths, starting in this state, that satisfy the
formula.

29

7.1.1. State formulae (SFL)
tt (True) – Is a constant satisfied in every state of a model.

ff (False) – Is a constant satisfied in none of model states.

LABEL (Atomic proposition) – Is satisfied in the states assigned with the given atomic
proposition (label).

!SFL (Negation) – Is satisfied in states, which do not fulfill SFL.

SFL1 && SFL2 (Conjunction) – Is satisfied in states fulfilling both SFL1 and SFL2.

SFL1 || SFL2 (Disjunction) – Is satisfied in states fulfilling SFL1 or SFL2.

P{ OP R}[PFL] (Probability measure) – For every state, it asserts that the prob-
ability measure of paths starting in the given state and satisfying PFL meets the probability
constraint OP R. Here OP ∈ {>,<,≤,≥} and R ∈ R[0,1].

7.1.2. Path formulae (PFL)
X SFL (Next) – Asserts that on a path, starting in some state s, the immediate successor

state of s satisfies the formula SFL.

SFL1 U SFL2 (Unbounded until) – Asserts that on a path there is a state satisfying
SFL2 and all preceding states satisfy SFL1.

7.2. PCTL
PCTL [HJ94] is an extension of CTL, which allows for probabilistic quantification of prop-
erties. PCTL extends the set of common formulae by one state and one path formula.

SFL = ...
| L{ OP R }[SFL]

PFL = ...
| SFL U[N, N] SFL

L{ OP R }[SFL] (Long-run) – Checks if the long-run probability for being in
states that fulfill SFL meet the probability constraint OP R.

SFL1 U[0, N] SFL2 (Time-bounded until) – Asserts that on a path there is a
state satisfying SFL2, such that this state is reached within N time steps (transitions) and all
preceding states on the path satisfy SFL1.

30

7.3. PRCTL
PRCTL [AHK03] is the rewards extension of PCTL and therefore extends PCTL with the
following formulae:

SFL = ...
| E[R, R] [SFL]
| E[N][R, R] [SFL]
| C[N][R, R] [SFL]
| Y[N][R, R] [SFL]

PFL = ...
| SFL U[N, N][R, R] SFL

E[R1, R2] [SFL] – Asserts that the long-run expected reward rate per time-
unit for SFL states lies within the interval [R1, R2].

E[N][R1, R2] [SFL] – Asserts that the expected reward rate in SFL-states
up to n transitions reached at the N-th epoch lies within the interval [R1, R2].

C[N][R1, R2] [SFL] – Asserts that the instantaneous reward in SFL states
at the N-th epoch lies within the interval [R1, R2].

Y[N][R1, R2] [SFL] – Asserts that the expected accumulated reward rate
in SFL states until the N-th transition lies within the interval [R1, R2].

SFL1 U[N1, N2][R1, R2] SFL2 (Time- & reward-interval until) –
Asserts that SFL2 will be satisfied within j ∈ [N1, N2] steps, that all preceding states
satisfy SFL1, and that the accumulated reward until reaching the SFL2-state lies in the inter-
val [R1, R2].

7.4. CSL
CSL [BHHK03] extends PCTL, but it works with the continuous time domain. Here the
long-run operator L{ OP R } is substituted with the steady-state operator S{ OP R }
and the time-bounded next operator is added:

SFL = ...
| S{ OP R }[SFL]

PFL = ...
| X[R, R] SFL

S{ OP R }[SFL] (Steady-state) – Is similar to the long-run operator of PCTL,
cf. Section 7.2.

31

X[R1, R2] SFL (Time-bounded next) – Asserts that a transition is made to a
SFL state at some time point t ∈ [R1, R2].

For CTMDPIs, the probability measure operator is interpreted in the way that is has to
hold for all possible resolutions of non-determinism in the model. Because of this, in the for-
mula P{OP R} [U[N, N]] , if OP ∈ {<,≤} then the maximum over all (time-
abstract, history-dependent) schedulers is computed ([BHKH05, BFK+09]), but if OP ∈
{>,≥} the minimum is taken. For uniform CTMDPIs, the algorithm of [BHKH05] will be
used, which is more efficient than the one for general CTMDPIs described in [BFK+09].

7.5. CSRL
CSRL [CKKP05] extends CSL with the following formulae:

PFL = ...
| X[R, R][R, R] SFL
| SFL U[R, R][R, R] SFL

X[R1, R1’][R2, R2’] SFL (Time- & reward-interval next) – Asserts
the a transition can be made to a SFL state at some time point t ∈ [R1, R1’] such that
the accumulated reward until time point t lies in the interval [R2, R2’].

SFL1 U[0, R1][0, R2] SFL2 (Time- & reward-bounded until) – As-
serts that SFL2 is satisfied at some time instant t ∈ [0, R1] such that the accumulated
reward until t lies in the interval [0, R2], and that at all preceding time instants SFL1

holds.

32

8. Model Checking by Discrete Event
Simulations

Since MRMC v1.3, we support model-checking by means of discrete event simulation. Be-
ing statistical in nature, such an approach cannot guarantee that the verification result is 100%
correct. Yet, it allows to bound the probability of generating an incorrect answer to a verifica-
tion problem, and, unlike the numerical approaches1, model checking using simulations does
not suffer from the state-space explosion. Note that, in the current implementation MRMC
operates on the pre-generated Markov chain which is completely loaded into the computer’s
RAM2, therefore the state-space explosion is not eliminated.

Techniques for model checking CSL (PCTL) properties using simulations have already
been developed. For example in [YS02], later extended by [YS06], an algorithm based
on Monte Carlo simulation and hypothesis testing for non-explosive stochastic discrete-
event systems is suggested. In [SVA04], the algorithms of [YS02] are extended to sta-
tistically verify black-box, deployed systems with a passive observer. Both statistical ap-
proaches [YS02, SVA04] considered a sub-logic of CSL that excludes steady-state and
unbounded-reachability properties. In [You04], the algorithm is extended to deal with a
subclass of unbounded-reachability problems. In [SVA05] the statistical verification method
of [YS02] is extended to verify unbounded-reachability properties of CSL (or PCTL) on
finite-state CTMCs (DTMCs), and SMCs. All these approaches presume an “on-the-fly”
model generation.

Contrary to the above mentioned techniques, our approach is based on Monte Carlo sim-
ulation and derivation of confidence intervals. We provide statistical algorithms for model
checking the most interesting CSL operators, such as steady-state, unbounded-reachability,
and time-interval reachability operators. In addition, when model checking unbounded-
reachability or steady-state properties of CSL, we do simulations on the embedded DTMC.
The latter simplifies simulation runs and also lets the corresponding techniques for model
checking of PCTL properties on DTMCs to be easily derived. We do not consider nested
simulation, see Section 6.2.3 on page 25, and working with finite-state systems, we assume
that we can deduce the structure of the Markov chain. For instance we can detect Bottom
Strongly Connected Components (BSCCs) of the Markov chain. For more details on the
implemented algorithms, as well as comparison to the previously existing simulation tech-
niques, consider reading Part 2 of [Zap08].

Of course, the quality and speed of simulations heavily depends on the quality and speed
of the underlying random number generator (RNG). For this reason seven different RNGs,
which vary in many aspects, are available in MRMC. The ones with the best performance

1Numerical model checking is carried out by symbolic and numerical methods.
2Random access memory.

33

and reliability results are set to be used by default. For an extended experimental comparison
of available RNG’s, consider reading Appendix B.

The rest of this chapter is organized as follows. In Section 8.1 we introduce the main
concepts of using confidence intervals in model checking. Further, in Section 8.2 we discuss
the simulation engine of MRMC on the basis of several examples.

8.1. Confidence intervals and model checking
Let us consider the verification of the three most important operators of CSL: the unbounded-
until operator P./ b (A U G), the steady-state operator S./ b (G), and the time-interval until
operator P./ b

(
A U[t1,t2] G

)
, with t1, t2 ∈ R≥0 and t1 ≤ t2. We assume that ./∈ {<,≤, >,≥

} and, since we do not consider nested simulation, both A and G are treated as sets of states.
In order to verify the formulas P./ b (A U G), P./ b

(
A U[t1,t2] G

)
or S./ b (G), we apply the

following procedure. First, for an initial state s0 the probability p̃ (= Prob (s0, A U G),
= Prob

(
s0, A U[t1,t2] G

)
or = Prob∞ (s0, G)) is estimated in a form of the c. i. Second, the

c. i. of p̃ is checked against the probability constraint ./ b, to assess whether s0 satisfies the
given formula or not.

Leaving the task of computing the c. i. of p̃ out of scope, further we concentrate on the
second step of the outlined approach. There are two important reasons for that. First, this
procedure is universal for all considered operators. Second, because of the probabilistic
nature of the c. i., the procedure should guarantee the correctness of the result with some
(predefined) confidence.

Further, we split our discussion into three parts. First, we show how to decide on p̃ ./ b
when it is known that p̃ ∈ [Al, Ar]. Then, we recall the notion of the c. i. of p̃ and outline
several problems related to the use of c. i. in validation of p̃ ./ b. Finally, we show how to
overcome this problems, either by imposing some assumptions or by putting constraints on
the width of the used c. i.

8.1.1. Simple problem
Let the value of p̃ be unknown, but let us also know two bounds Al, Ar ∈ R≥0 such that
Al ≤ p̃ ≤ Ar. In this setting, assessing whether p̃ ./ b holds can be done based on the
bounds Al and Ar in a straightforward manner. Clearly, such an assessment, for all allowed
./ , is possible only if b 6∈ [Al, Ar] and thus the check yields three possible answers: positive
(TRUE), negative (FALSE), or “Don’t know” (NN).

8.1.2. Using confidence intervals
For a given confidence ξ and sample size M ∈ N≥2, the c. i. of p̃ can be represented in the
following form:

Prob
(
Al

(−→
X
)
≤ p̃ ≤ Ar

(−→
X
))
≈ ξ, (8.1)

where
−→
X is a sample obtained via simulations of the given Markov chain. Equation (8.1)

indicates that sampled intervals
[
Al

(−→
X
)
, Ar

(−→
X
)]

contain p̃ in about 100 · ξ% cases. The
latter implies that using the c. i. of p̃, for deciding p̃ ./ b, brings us two problems:

34

• If b = p̃ then the solution of the model-checking problem is generally unknown. I.e.,
similar to model checking by means of hypothesis testing [YS06, SVA04, SVA05], the
analysis based on the c. i. will be inconclusive. Clearly, in this case with probability ξ
we have p̃, b ∈

[
Al

(−→
X
)
, Ar

(−→
X
)]

.

• Due to the probabilistic nature of the c. i., the result of the comparison between the
c. i. and constraint ./ b becomes probabilistic itself. This means that, in order to give
a correct answer to p̃ ./ b, it is not enough to check the c. i. of p̃ against ./ b. In
addition, we have to provide a confidence with which the result of such comparison
provides a correct answer to the original problem.

8.1.3. Solving the problems
The first problem is generally unsolvable. Thus we can only assume that |b − p̃| = δ with
δ ∈ R>0. Under this assumption, the second problem can be solved as follows.

Let us choose δ′ ∈ R>0 such that δ′ < δ and consider only c. i. borders Al
(−→
X
)

, Ar
(−→
X
)

such that Ar
(−→
X
)
− Al

(−→
X
)
≤ δ′. Clearly, using such c. i. for deciding on p̃ ./ b will

guarantee us that in at least3 100 · ξ% cases we will be given a correct answer.
In the solution above, δ′ is defined using δ which is unknown. Yet, it is clear that an

incorrectly chosen δ′ can be recognized by the fact that in repetitive simulations the combined
percentage of “incorrect” and “Don’t know” answers exceeds 100 · (1− ξ) %.

Note that, producing a δ′-tight c. i. is a matter of computing a sequential confidence inter-
val. In MRMC we implemented a naive procedure where we increase the sample size until
the c. i. becomes narrow enough. We realize that using this improper procedure can cause
the decrease of the confidence levels, although this was not observed in our experiments, see
Chapter 7 of [Zap08]. The description of a proper sequential c. i. derivation can be found in
[Fis96, CR65].

Let us summarize that for a given confidence ξ and a maximum c. i. width δ′ the simulation
engine of MRMC guarantees to provide the correct answer to the model-checking problem
if the following conditions hold:

1. |b− p̃| = δ ∈ R>0 2. δ′ ∈ R>0 and δ′ < δ

Note that, in MRMC δ′ corresponds to the value of Indiff. reg. width, man-
ageable by the set indiff width R command, see Section 6.2.3.

8.2. Simulation engine
In this section we provide several examples that explain how the simulation engine of MRMC
can be used.

Example 6 Consider the dice model depicted in Figure 2.2 on page 6. Let us forget about
its rewards and assume that this model is a CTMC. Then if we invoke MRMC on this model,
turn the simulation engine on and use the print command, we get the following:

3An incorrect c. i. of p̃ can still result in the correct answer to p̃ ./ b.

35

$ mrmc ctmc game.lab game.tra
...
>> set simulation on
>> print
---General settings:
...
M. C. simulation = ON
...

---Monte Carlo simulation:
Simulation type = ALL
Sim. steady state = HYBRID
Reg. method steady = HEURISTIC
Confidence level = 9.500000e-01
Indiff. reg. width = 2.000000e-02
Max sample size = 100000
Min sample size = 10000
Sample-size step type = AUTO
Sample-size step = 100
RNG discrete dist. = Appl. Crypt.
RNG exponential dist. = GSL Taus
Max simulation depth = 100000
Min simulation depth = 10000
Simulation-depth step = 1000
BSCC dim. multiplier = 3

---Numerical methods:
...

Here, for brevity, we omitted uninteresting parts of the output. Notice that, the section called
General settings indicates that the simulation engine is activated, and the newly ap-
peared section Monte Carlo simulation contains most of the options, manageable
by the commands given in Section 6.2.3. Note that, more options are available in case of
doing simulations for one initial state:

>>set sim_type one
>>print
---General settings:
...

---Monte Carlo simulation:
Simulation type = ONE
Sim. initial state = 1
...

Above, the simulation mode is changed and the new option Sim. initial state indi-
cates that the default initial state is 1.

In the following example we are going to consider the most typical case of model-checking
using the simulation engine:

Example 7 Extending Example 6, let us be interested in a simple question: Is the probability
to reach the goal state without visiting the loss state greater than 0.3? The latter can be
expressed as the following CSL formula: P>0.3 (¬loss U goal).

As we would like to check the above formulated question by means of simulation, we invoke
MRMC’s simulation engine by typing set simulation on. Providing MRMC with the
formula above will cause the tool to run its model checking procedure:

>>set simulation on
>>P{> 0.3} [!loss U goal]
$SIMULATED: YES
$MAX_NUM_USED_OBSERV: 101944
$CONFIDENCE: 9.500000e-01

36

$CI_LEFT_RESULT: (0.1919024, 0.0000000, 0.1893418, 0.1974192, 1.0000000)
$CI_RIGHT_RESULT: (0.2097583, 0.0000000, 0.2051940, 0.2114822, 1.0000000)
$YES_STATE: { 5 }
$NO_STATE: { 1, 2, 3, 4 }

The Total Elapsed Model-Checking Time is 115 milli sec(s).
>>

As a result, we get four relevant outputs: two probability vectors $CI LEFT RESULT
and $CI RIGHT RESULT, as well as the two state sets $YES STATE and $NO STATE.
The probability vectors correspond to the left and right c. i. borders derived for the first,
second, etc. state of the model. Note that, the trivial probabilities, i. e. 0.0 and 1.0, are most
likely to be computed via graph analysis. The $YES STATE set contains the states in which
the formula is satisfied. The $NO STATE set contains states in which the formula is not
satisfied. If the for a given state the simulation result is inconclusive, then it does not appear
in any of the sets.

In the output above, $MAX NUM USED OBSERV indicates the maximum – over all initial
states – number of states that were considered in order to provide the answer for the given
model-checking problem. More specifically, we count states visited during the simulation
procedure. Therefore, the same model state is counted as many times as it is visited. On
the other hand, we do not take into account state visits that occur during the model-graph
analysis or numerical computations (for the case of hybrid simulation).

The $CONFIDENCE output tells us, that the results are correct with the 95% confidence.
In is important to note that in case of nested formulas, when we have to simulate more than
one operator, the confidence levels for sub formulas are derived from the overall confidence
level. Their values then can be viewed by using the print tree command, see Section 6.1.

In the following example we are going to explain two important cases: the output of the
simulation results for one initial state; and an insufficient number of observations.

Example 8 Extending Example 7, let us assume that we are only interested in verifying
P>0.3 (¬loss U goal) in state 3. Also, we can be afraid of spending too much time on simu-
lation and thus want to reduce the maximum sample size and simulation depth. The latter is
important only for model checking the unbounded-until, or the steady-state (by pure simula-
tion) operators. Then our interaction with MRMC might look as follows:

>>set simulation on
>>set sim_type one
>>set initial_state 3
>>set min_sample_size 10
>>set max_sample_size 30
>>set min_sim_depth 10
>>set max_sim_depth 30
>>P{> 0.3} [!loss U goal]
$SIMULATED: YES
$INITIAL STATE: 3
$MAX_NUM_USED_OBSERV: 308
$CONFIDENCE: 9.500000e-01
$CI_LEFT_RESULT: (0.1154063)
$CI_RIGHT_RESULT: (0.3023792)
$YES_STATE: { }
$NO_STATE: { }
$INDIFF_ERR_STATE: { 3 }
WARNING: Increase max_sample_size for obtaining the conf. int. of the desired width.

The Total Elapsed Model-Checking Time is 0 milli sec(s).

37

Here, we first set simulation mode to one and then set the initial state to be 3. Next, we
reduce the minimum and the maximum sample sizes and simulation depths. After that we
invoke the model checking procedure. In this case the c. i.-border arrays have size 1. This
can be checked by the following:

>>$RESULT[1]
$CI_LEFT_RESULT[1] = 0.1154063
$CI_RIGHT_RESULT[1] = 0.3023792
>>$RESULT[3]
$CI_LEFT_RESULT[3] = ??
WARNING: Invalid index 3, required to be in the [1, 1] interval.
$CI_RIGHT_RESULT[3] = ??
WARNING: Invalid index 3, required to be in the [1, 1] interval.

Here, unlike in the previous example, the sets $YES STATE and $NO STATE are empty.
This should indicate that the simulation provides inconclusive results. Moreover, and this
is an important part, a new set $INDIFF ERR STATE is added to the output. This set
contains our initial state, i. e. 3. If this set appears in the output, it means that the max.
number of observations (the max. sample size) and/or the max. simulation depth are not
large enough to produce the c. i. tighter than the (specified) value of Indiff. reg.
width, see Section 8.1. If this happens, the simulation run should be discarded, and the
max. sample size / simulation depth values have to be increased.

38

9. MRMC Test Suite

In order to keep MRMC bug free and to compare its performance to other model-checking
tools (such as PRISM [KNP02], Ymer [You05b] and VESTA [SVA04]) we have developed
a fully automated test suite featuring: internal, functional and performance tests.

The internal tests are targeted on testing, e. g., MRMC data structures, such as: sparse ma-
trices, bit sets, sample vectors, and etc. The functional tests are used to assess the user-level
behavior of the tool. This includes tests for the command-line interface, model-checking
algorithms, and etc. Last but not least, the performance tests allow to evaluate the efficiency
of implemented algorithms, such as: probabilistic bisimulation minimization, and “discrete
event simulation” based model checking. Here, we consider several efficiency aspects: veri-
fication time, memory usage and etc.

The test suite contains well-known case studies: Wireless Group Communication Pro-
tocol (WGC) [MNS99, BCD02, MKL04], Simpel Peer-To-Peer Protocol (PTP) [KNP06],
Workstation Cluster (WC) [HHK00, BKKT03, YKNP04, KNP02, KNP08b], Cyclic Server
Polling System (CSP) [IT90, You05b, You05a, HKMKS00, SVA04, YKNP06, YS06], Ran-
domized Mutual exclusion (RME) [PZ86], Crowds Protocol (CP) [RR98, KNP08a] and Syn-
chronous Leader Election Protocol (SLE) [IR90, LP02, GSB94, FP04].

The test suite is freely distributed and can be obtained from:

http://www.mrmc-tool.org/

Note that, the test suite is intended to be used on a Linux platform only and its performance
sub suite is not proven to work correctly under ”Windows + Cygwin” or ”Mac OS X”. For
the test-suite installation instructions see Section 3.2 of Chapter 3. The test-suite structure is
as follows:

• ./TS Manual.pdf – The test-suite manual.

• ./LICENSE – A copy of the GPL license.

• ./README – The “read me” file.

• ./RELEASENOTES – The release notes.

• ./settings.cfg – The configuration script.

• ./test all.sh – The test-suite invocation script.

• ./clean all.sh – The test-suite “clean-up” script.

• ./stop.sh – The test-run termination script.

• ./internal tests/ – Unit tests of the MRMC core.

39

http://www.mrmc-tool.org/

• ./functional tests/ – Functional tests of MRMC.

• ./performance tests/ – Performance tests of MRMC.

40

10. Contact

The development of MRMC began in 2004 in the Formal Methods and Tools group (FMT)
at the University of Twente (The Netherlands) under the supervision of Prof. Dr. Ir. Joost-
Pieter Katoen. Later, the main development of the tool was moved to the Software Modeling
and Verification group at the RWTH Aachen (Germany). At present there are several other
groups involved into the tool development, namely the Informatics for Technical Applica-
tions group at the Radboud University Nijmegen (The Netherlands), the Dependable Systems
and Software group at the University of Saarland (Germany), and the Scientific Computing
and Control Theory group at the Centrum voor Wiskunde en Informatica (The Netherlands).

If you have any questions, comments or ideas, or if you want to participate in MRMC
development, please consider the following contact information:

Name: Prof. Dr. Ir. Joost-Pieter Katoen
Relation: The MRMC team leader, 2004 – present
Affiliation: Software Modeling and Verification, RWTH Aachen, Ger-
many

Name: Dr. Ivan S. Zapreev
Relation: MRMC development, 2004 – present
Affiliation: Scientific Computing and Control Theory, Centrum voor
Wiskunde en Informatica, The Netherlands

Name: Dr. David N. Jansen
Relation: MRMC extension and optimization, 2007 – present
Affiliation: Model-Based System Development, Radboud University
Nijmegen, The Netherlands

Name: Prof. Dr.-Ing. Holger Hermanns
Relation: CTMDPI model checking, 2007 – present
Affiliation: Dependable Systems and Software, University of Saarland,
Germany

More contact information can be found on the MRMC web-page [ZJN+08].

41

http://www-i2.informatik.rwth-aachen.de/~katoen/
http://db.cwi.nl/personen/publiek/zoek_show.php4?persnr=2198
http://www.cs.ru.nl/D.Jansen/
http://depend.cs.uni-sb.de/index.php?hermanns

Bibliography

[ABFH+08] Cerion Armour-Brown, Jeremy Fitzhardinge, Tom Hughes, Nicholas Nether-
cote, Paul Mackerras, Dirk Mueller, Julian Seward, Robert Walsh, and Josef
Weidendorfer, Valgrind, http://www.valgrind.org/, 2008.

[AHK03] Suzana Andova, H. Hermanns, and Joost-Pieter Katoen, Discrete-Time Re-
wards Model-Checked, Formal Modeling and Analysis of Timed Systems
(FORMATS) (K.G. Larsen and P. Niebert, eds.), vol. 2791, LNCS, Springer,
2003, pp. 88–104.

[BCD02] Andrea Bondavalli, Andrea Coccoli, and Felicita Di Giandomenico, QoS
Analysis of Group Communication Protocols in Wireless Environment, Con-
currency in Dependable Computing (Paul Ezhilchelvan and Alexander Ro-
manovsky, eds.), Kluwer Academic Publishers, 2002, pp. 169–188.

[BDH00] S. Bernardi, S. Donatelli, and A. Horváth, Compositionality in the GreatSPN
Tool and Its Application to the Modelling of Industrial Applications, Practical
Use of High-level Petri Nets (K. Jensen, ed.), University of Aarhus, Depart-
ment of Computer Science, 2000, pp. 127–146.

[BFK+09] Tomás Brázdil, Vojtech Forejt, Jan Krcal, Jan Kretı́nský, and Antonı́n Kucera,
Continuous-time stochastic games with time-bounded reachability, Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, 2009,
pp. 61–72.

[BFKT03] P. Buchholz, M. Fischer, P. Kemper, and C. Tepper, Model checking of CTMCs
and discrete event simulation integrated in the APNN-Toolbox, Measurement,
Modelling, and Evaluation of Computer-Communication Systems (F. Bause,
ed.), vol. 781, Fachbereich Informatik, Universität Dortmund, 2003, pp. 30–
33.

[BHH+06] Eckard Bode, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas
Peikenkamp, Reza Pulungan, Ralf Wimmer, and Bernd Becker, Composi-
tional Performability Evaluation for STATEMATE, Quantitative Evaluation of
Systems (QEST), IEEE Computer Society, 2006, pp. 167–178.

[BHHK00] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter
Katoen, On the Logical Characterisation of Performability Properties, Inter-
national Colloquium on Automata, Languages and Programming (ICALP)
(Ugo Montanari, Jos D. P. Rolim, and Emo Welzl, eds.), LNCS, vol. 1853,
Springer, 2000, pp. 780–792.

42

http://www.valgrind.org/

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, Model-Checking Algo-
rithms for Continuous-Time Markov Chains, IEEE Transactions on Software
Engineering 29 (2003), no. 6, 524–541.

[BHKH05] Christel Baier, Holger Hermanns, Joost-Pieter Katoen, and Boudewijn R.
Haverkort, Efficient computation of time-bounded reachability probabilities
in uniform continuous-time Markov decision processes, Theoretical Computer
Science 345 (2005), no. 1, 2–26.

[BKKT03] P. Buchholz, J.-P. Katoen, P. Kemper, and C. Tepper, Model-checking large
structured Markov chains, Journal of Logic and Algebraic Programming 56
(2003), 69–96.

[BM93] Jon L. Bentley and M. Douglas McIlroy, Engineering a sort function, Soft-
ware: practice and experience 23 (1993), no. 11, 1249–1265.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, AMC Transac-
tions On Programming Languages And Systems 8 (1986), no. 2, 244–263.

[CG04] Frank Ciesinski and Marcus Größer, On Probabilistic Computation Tree
Logic, Validation of Stochastic Systems (Christel Baier, Boudewijn R.
Haverkort, Holger Hermanns, Joost-Pieter Katoen, and Markus Siegle, eds.),
LNCS, vol. 2925, Springer, 2004, pp. 147–188.

[CKKP05] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan, Model-Checking Markov
Reward Models with Impulse Rewards., Dependable Systems and Networks
(DSN), IEEE Computer Society, 2005, pp. 722–731.

[CL77] A. A. Crane and J. Lemoine, An introduction to the regenerative method for
simulation analysis, Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1977.

[CR65] Y. S. Chow and H. Robbins, On the asymptotic theory of fixed-width sequen-
tial confidence intervals for the mean, Annals of Mathematical Statistics 36
(1965), no. 2, 456–462.

[DHS03] Salem Derisavi, Holger Hermanns, and William H. Sanders, Optimal state-
space lumping in Markov chains, Information processing letters 87 (2003),
309–315.

[FG88] Bennett L. Fox and Peter W. Glynn, Computing Poisson probabilities, Com-
munications of the ACM 31 (1988), no. 4, 440–445.

[Fis96] George S. Fishman, Monte Carlo: Concepts, Algorithms and Applications,
Springer, New York, NY, USA, 1996.

[Fou07] Eclipse Foundation, Eclipse, http://www.eclipse.org, 2007.

43

http://www.eclipse.org

[FP04] W. Fokkink and J. Pang, Simplifying Itai-Rodeh leader election for anonymous
rings, Electronic Notes in Theoretical Computer Science 128 (2004), no. 6,
53–68.

[GSB94] Rajiv Gupta, Scott A. Smolka, and Shaji Bhaskar, On randomization in se-
quential and distributed algorithms, ACM Computing Surveys 26 (1994),
no. 1, 7–86.

[HCH+02] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier, Model
Checking Performability Properties, Dependable Systems and Networks
(DSN), IEEE Computer Society, 2002, pp. 103–112.

[Her] Holger Hermanns, Homepage of the Dependable Systems group, http://
depend.cs.uni-sb.de.

[HHK00] B. Haverkort, H. Hermanns, and J.-P. Katoen, On the Use of Model Checking
Techniques for Dependability Evaluation, Symposium on Reliable Distributed
Systems (SRDS), IEEE Computer Society, 2000, pp. 228–237.

[Hil96] Jane Hillston, A Compositional Approach to Performance Modelling, Distin-
guished Dissertations Series, Cambridge University Press, New York, NY,
USA, 1996.

[HJ94] N. Hansson and B. Jonsson, A logic for reasoning about time and reliability,
Formal Aspects of Computing 6 (1994), no. 5, 512–535.

[HKMKS00] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus
Siegle, A Markov Chain Model Checker, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS) (Susanne Graf and Michael
Schwartzbach, eds.), LNCS, vol. 1785, Springer, 2000, pp. 347–362.

[HKNP06] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker, PRISM: A Tool for
Automatic Verification of Probabilistic Systems, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) (H. Hermanns and J. Pals-
berg, eds.), LNCS, vol. 3920, Springer, 2006, pp. 441–444.

[IR90] Alon Itai and Michael Rodeh, Symmetry breaking in distributed networks, In-
formation and Computation 88 (1990), no. 1, 60–87.

[IT90] Oliver C. Ibe and Kishor S. Trivedi, Stochastic Petri Net Models of Polling
Systems, Selected Areas in Communications 8 (1990), no. 9, 1649–1657.

[JKO+07] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle Stoelinga,
and Ivan S. Zapreev, How Fast and Fat Is Your Probabilistic Model Checker?,
Haifa Verification Conference (HVC), LNCS, vol. 4899, Springer, 2007,
pp. 65 – 79.

[KKNP01] J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker, Faster and Sym-
bolic CTMC Model Checking, Process Algebra and Probabilistic Methods,
Performance Modeling and Verification (PAPM/PROBMIV) (Luca de Alfaro
and Stephen Gilmore, eds.), LNCS, vol. 2165, Springer, 2001, pp. 23–38.

44

http://depend.cs.uni-sb.de
http://depend.cs.uni-sb.de

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan S. Zapreev, and David N. Jansen,
Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking,
Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(Orna Grumberg and Michael Huth, eds.), LNCS, vol. 4424, Springer, 2007,
pp. 87–101.

[KNP02] M. Kwiatkowska, G. Norman, and D. Parker, PRISM: Probabilistic Symbolic
Model Checker, Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS) (T. Field, P. Harrison, J. Bradley, and U. Harder, eds.),
LNCS, vol. 2324, Springer, 2002, pp. 200–204.

[KNP06] , Symmetry Reduction for Probabilistic Model Checking, Computer
Aided Verification (CAV) (T. Ball and R. Jones, eds.), LNCS, vol. 4114,
Springer, 2006, pp. 234–248.

[KNP08a] , Prism case studies, http://www.prismmodelchecker.org/casestudies/,
2008.

[KNP08b] , Prism web-page, Workstation Cluster Example, http://www.
prismmodelchecker.org/casestudies/cluster.php, 2008.

[Knu01] Timo Knuutila, Re-describing an algorithm by hopcroft, Theoretical computer
science 250 (2001), no. 1–2, 333–363.

[KZ05] J.-P. Katoen and Ivan S. Zapreev, Safe On-The-Fly Steady-State Detection for
Time-Bounded Reachability, Tech. Report TR-CTIT-05-52, CTIT, University
of Twente, 2005.

[KZ06] Joost-Pieter Katoen and Ivan S. Zapreev, Safe On-The-Fly Steady-State De-
tection for Time-Bounded Reachability, Quantitative Evaluation of Systems
(QEST), IEEE Computer Society, 2006, pp. 301–310.

[KZ09] , Simulation-Based CTMC Model Checking: An Empirical Evalua-
tion, Quantitative Evaluation of Systems (QEST), IEEE Computer Society,
2009, www.mrmc-tool.org, pp. 31–40.

[KZH+09] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen, The Ins and Outs of The Probabilistic Model Checker
MRMC, Quantitative Evaluation of Systems (QEST) (Los Alamitos, Calif.),
IEEE Computer Society, 2009, www.mrmc-tool.org, pp. 167–176.

[KZH+10] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns,
and David N. Jansen, The ins and outs of the probabilistic model checker
MRMC, Performance evaluation (2010), DOI:10.1016/j.peva.2010.04.001.

[LP02] Richard Lassaigne and Sylvain Peyronnet, Approximate verification of
probabilistic systems, Process Algebra and Probabilistic Methods, Perfor-
mance Modeling and Verification (PAPM/PROBMIV) (Holger Hermanns and
Roberto Segala, eds.), Springer, 2002, pp. 213–214.

45

http://www.prismmodelchecker.org/casestudies/
http://www.prismmodelchecker.org/casestudies/cluster.php
http://www.prismmodelchecker.org/casestudies/cluster.php
www.mrmc-tool.org
www.mrmc-tool.org

[MKL04] Mieke Massink, Joost-Pieter Katoen, and Diego Latella, Model Checking De-
pendability Attributes of Wireless Group Communication, Dependable Sys-
tems and Networks (DSN), IEEE Computer Society, 2004, pp. 711–720.

[MN98] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator,
ACM Transactions on Modeling and Computer Simulation 8 (1998), no. 1,
3–30.

[MNS99] Michael Mock, Edgar Nett, and Stefan Schemmer, Efficient Reliable Real-
Time Group Communication for Wireless Local Area Networks, European
Dependable Computing Conference (Jan Hlavicka, Erik Maehle, and Andrs
Pataricza, eds.), LNCS, vol. 1667, Springer, 1999, pp. 380–400.

[MS76] Ian Munro and Philip M. Spira, Sorting and searching in multisets, SIAM
journal of computation 5 (1976), no. 1, 1–8.

[PM88] Stephen K. Park and Keith W. Miller, Random Number Generators: Good
Ones Are Hard to Find, Commun. ACM 31 (1988), no. 10, 1192–1201.

[PtFSF07a] GNU Project and the Free Software Foundation, GNU General Public License
(GPL), http://www.gnu.org/copyleft/gpl.html, 2007.

[PtFSF07b] , GNU Scientific Library (GSL), http://www.gnu.org/software/gsl,
2007.

[PZ86] A. Pnueli and L. Zuck, Verification of Multiprocess Probabilistic Protocols,
Distributed Computing 1 (1986), no. 1, 53–72.

[QS96] M. A. Qureshi and W. H. Sanders, A New Methodology for Calculating Dis-
tributions of Reward Accumulated During a Finite Interval, Fault-Tolerant
Computing, IEEE Computer Society, 1996, pp. 116–125.

[RR98] M. K. Reiter and A. D. Rubin, Crowds: Anonymity for Web Transactions,
ACM Transactions on Information and System Security, vol. 1, ACM Press,
1998, pp. 66–92.

[Sch95] Bruce Schneier, Applied cryptography (2nd ed.): protocols, algorithms, and
source code in C, John Wiley & Sons, Inc., New York, NY, USA, 1995.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha, Statistical Model Check-
ing of Black-Box Probabilistic Systems, Computer Aided Verification (CAV)
(Rajeev Alur and Doron A. Peled, eds.), LNCS, vol. 3114, Springer, 2004,
pp. 202–215.

[SVA05] , On Statistical Model Checking of Stochastic Systems, Computer
Aided Verification (CAV) (Kousha Etessami and Sriram K. Rajamani, eds.),
LNCS, vol. 3576, Springer, 2005, pp. 266–280.

46

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/software/gsl

[TG06] Mirco Tribastone and Stephen Gilmore, A New Generation PEPA Work-
bench, Process Algebra and Stochastically Timed Activities (PASTA), 2006,
pp. 1820–1845.

[TV00] H. C. Tijms and R. Veldman, A fast algorithm for the transient reward dis-
tribution in continuous-time Markov chains, Operations Research Letters 26
(2000), no. 4, 155–158.

[VL08] Antti Valmari and Petri Lehtinen, Efficient minimization of dfas with partial
transition functions, 25th international symposium on theoretical aspects of
computer science (STACS 2008) (Dagstuhl, Germany) (Susanne Albers and
Pascal Weil, eds.), Leibniz International Proceedings in Informatics (LIPIcs),
vol. 1, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008, pp. 645–
656.

[YKNP04] H. Younes, M. Kwiatkowska, G. Norman, and D. Parker, Numerical vs. Sta-
tistical Probabilistic Model Checking: An Empirical Study, Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS) (K. Jensen and
A. Podelski, eds.), LNCS, vol. 2988, Springer, 2004, pp. 46–60.

[YKNP06] Håkan Younes, Marta Kwiatkowska, Gethin Norman, and David Parker, Nu-
merical vs. Statistical Probabilistic Model Checking, Software Tools for Tech-
nology Transfer (STTT) 8 (2006), no. 3, 216–228.

[You04] H. Younes, Black-box probabilistic verification, Tech. Report CMU-CS-04-
162, Carnegie Mellon University, 2004.

[You05a] , Verification and Planning for Stochastic Processes with Asyn-
chronous Events, Ph.D. thesis, Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA, USA, 2005.

[You05b] , Ymer: A Statistical Model Checker, Computer Aided Verification
(CAV) (Kousha Etessami and Sriram K. Rajamani, eds.), LNCS, vol. 3576,
Springer, 2005, pp. 429–433.

[YS02] Håkan Younes and Reid Simmons, Probabilistic Verification of Discrete Event
Systems using Acceptance Sampling, Computer Aided Verification (CAV)
(Ed Brinksma and Kim Guldstrand Larsen, eds.), LNCS, vol. 2404, Springer,
2002, pp. 223–235.

[YS06] H. Younes and R. Simmons, Statistical Probabilistic Model Checking with
a Focus on Time-Bounded Properties, Information and Computation 204
(2006), no. 9, 1368–1409.

[Zap08] I. S. Zapreev, Model Checking Markov Chains: Techniques and Tools, Ph.D.
thesis, University of Twente, Enschede, The Netherlands, 2008.

[ZJN+08] Ivan S. Zapreev, Christina Jansen, Viet Yen Nguyen, David N. Jansen, et al.,
MRMC homepage, http://www.mrmc-tool.org/, 2008.

47

http://www.mrmc-tool.org/

A. CTMDPI: Model examples

This appendix describes CTMDPI models supported by MRMC. These are the input mod-
els for the CTMDPI model-checking component [BHKH05] of MRMC, developed by the
Dependable Systems and Software group [Her] of the Saarland University.

A.1. Markov decision processes
In general, Markov decision processes (MDPs), and CTMDPIs in particular, are similar to
Markov chains, except that in addition to the stochastic transitions they also allow for the
non-deterministic ones. The non-determinism introduced by them is supposed to be resolved
by some scheduler.

Typically, MDPs are expected to have an initial distribution. However, we will assume
that there is just one initial state, namely the state 1 of any given CTMDPI model.

Figure A.1.: A CTMDP example

Example 9 An example CTMDP is depicted in Figure A.1. This model contains only two
states: 1 and 2. For the first one, a scheduler can choose between two transitions, namely
a and b. If the choice is done in favor of the first one, then further we have a probabilistic
choice defined by the rate 3 of going to state 2 and the rate of 4 of going back to state 1.
Alternative, if the scheduler chooses b, the rate of returning to state 1 is only 1 and to state
2 is 6. State 2 does not have a true non-deterministic choice, because there is only one
non-deterministic transition present.

It becomes clear now, that with MDP models, like with simple CTMCs, one can be inter-
ested in computing, e. g., reachability probabilities and etc. The only difference is that, since
we can have any possible scheduler, we have to talk about minimal and maximal probabili-
ties. All this implies that we can actually do model checking of CTMDPs.

48

A.1.1. Markov decision processes with internal non determinism
The CTMDP described before has only one level of non determinism. It is also possible to
have CTMDPs with two layers of non-determinism, in this case we call them CTMDPIs. On
the first layer, an external scheduler takes a decision, then an internal decision occurs, and
after this the probabilistic decision takes place.

STATES 2
#DECLARATION
#END
1 a
* 2 7.0
1 a
* 1 4.0
* 2 3.0
1 b
* 1 1.0
* 2 6.0
2 a
* 2 7.0
2 a
* 2 5.0
* 1 2.0

Figure A.2.: A CTMDPI example

Example 10 Consider a CTMDPI model given in the left-hand side of Figure A.2. In this
model, state 1 has two external non-determinism choices: a and b. If decision a is taken,
then there is an internal non-deterministic choice. One branch of it leads to going to state
2 with the rate 7. The other one leads to going to state 2 with the rate 3 and to state 1 with
the rate 4. Decision b leads to a trivial internal non-determinism. State 2 has an internal
non-determinism as well.

The CTMDP examples above are given by state-transitions, corresponding distributions,
and labeling functions that map sets of labels to the transitions. Note that, for model checking
we also need to provide state labeling functions (in our cases the set of state labels are empty).

In order to be used with MRMC, CTMDPIs have to be transformed into the MRMC input
files that have an extension .ctmdpi. For example, the model given in the left-hand side
of Figure A.2 results in a file given in right-hand side of the same figure. It is important to
note, that CTMDPI model checking uses CSL for specifying properties. At present we only
support time-bounded reachability properties. Similar to the CTMC model checking, these
properties are based on state labels that have to be specified in a .lab file. The transition
labels are needed only for the CTMDPI model-checking engine and should not be used in
properties.

49

B. RNG Investigations

We define random number generators (RNGs) as algorithms that allow to generate uniformly
distributed random numbers for a prescribed real interval.

RNG implementations are commonly used in programming and especially in discrete-
event simulation engines. In MRMC we use RNGs for simulating discrete or exponentially
distributed random variables. The first ones are used to simulate the probabilistic choice
between state-transitions and the second ones are employed to simulate exponentially dis-
tributed waiting times of CTMC states.

Nowadays, there exist many RNGs, but often these generators vary in various aspects. For
example, they can differ in: time needed to calculate a random number or the quality of their
output. The latter aspect can be split in (at least) two parts: one generator can calculate more
equidistributional random numbers than the other; different generators can have different
periods, i. e. the number of method invocations after which the generated random numbers
start to repeat in a circular manner. In our experiments, though, we mainly concentrated
on how good RNGs are for generating values of non-uniform discrete and exponentially
distributed random variables. This was done by accessing the speed of random-number
generation and the correspondence of the sampled distributions to the original ones.

To choose which generator is better and can be used as a default one in MRMC, we
tested seven different RNGs. Some of them were taken because they already made it into
probabilistic model checkers such as PRISM, Ymer or VESTA, the others are widely used
in industry, and etc.

The rest of the appendix is organized as follows: Section B.1 presents the description of the
considered RNGs. Further, in Section B.2, we explain how RNGs can be used for generating
values of non-uniform discrete and exponentially distributed random variables, and present
the experimental setup. Section B.3 provides the experimental results and comparison.

B.1. Random Number Generators
Here, we provide a short summary of the tested RNGs, and also indicate the MRMC option
values corresponding to each of them.

B.1.1. Linear Congruential Generator (LCG) – prism

LCG is the oldest and mostly used random-number generator algorithm. A sequence of
random numbers is calculated according to the formula xn+1 = (a ∗ xn + c)modm, where
x0 denotes the seed (the initial value) and m is the RNG’s period. The considered LCG is
implemented as the random function rand() of the standard C library (gcc). The use of rand()
was taken into account, because PRISM uses it in its simulation engine. However, it should

50

be noted that the C random function is known to suffer from a low period. Even the 32-bit
version of it can only offer a period of m = 232.

B.1.2. Improved LCG [PM88] (ILCG) – ciardo

ILCG is a version of LCG, developed by Steve Park and Keith Miller. It works similar to
the Standard C random function, but is known to generate more equidistributional random
numbers. Therefore, it is often proposed to be used instead of rand(), although it also has a
small period of m = 232.

B.1.3. Combined LCG [Sch95] (CLCG) – app crypt

This RNG is another extension of the standard LCG. The main advantage of this method is
that, by using two independent LCGs, it increases the period up to about m = 264. Note that,
in most cases it is more efficient to combine two LCGs than taking one with a much larger
modulus (period). CLCG is widely used in the field of Cryptography.

B.1.4. Mersenne Twister [MN98] (Twister) – ymer

The Mersenne Twister is a random-number generator developed by Makoto Matsumoto and
Takuji Nishimura in 1997. Today, there exist several variants of this algorithm. We have
chosen Mersenne Twister MT19937 (32-bit version), because it is the newest and most com-
monly used one. This algorithm is also employed by Ymer and comes with a large period of
m = 219937 − 1.

B.1.5. RNGs from GSL [PtFSF07b]
RNGs introduced in this section are a part of the GNU Scientific Library (GSL).

Ranlux Generator (Ranlux) – gsl ranlux

According to the GSL documentation, the implemented RANLUX algorithm is a second-
generation version of the RANLUX algorithm of Lüscher and has a period of about m =
10171. GSL developers recommend this algorithm as the one with the best mathematically-
proven quality at the expense of performance.

Lagged Fibonacci Generator (LFG) – gsl lfg

According to the GSL documentation, LFG produces random numbers as xor’d sum of
previously calculated values on the basis of the following formula:

rn = rn−A XOR rn−B XOR rn−C XOR rn−D

with A = 471, B = 1586, C = 6988, D = 9689. This RNG has a period of m = 102917

and is recommended by GSL developers as a fast simulation-quality generator.

51

Tausworthe Generator (Tausworthe) – gsl taus

According to the GSL documentation this is a maximally equidistributed combined Taus-
worthe generator (or polynomial generator) by L’Ecuyer with a period of m = 288 (about
1026). Like the lagged Fibonacci generator, the Tausworthe generator is recommended by
GSL developers as a fast simulation-quality generator (which is faster than LFG).

B.2. Experimental setup
In this section, we describe the experimental setup used for the evaluation of the before
mentioned RNGs, in application to generation of non-uniform discrete and exponentially
distributed random variables.

In essence, our approach is based on taking a random variable with a particular distribution
and sampling a set of its values (produced with the help of a particular RNG). These values
are then used for computing the estimate of the underlying distribution. The latter one is
compared to the original distribution of the random variable. The main values measured in
our experiments (per distribution), are as follows:

1. The time needed for generating a random values when using a particular RNG.

2. The difference between the estimated and original distributions.

B.2.1. Non-Uniform Discrete Random Variables
Generation of non-uniformly distributed discrete random numbers, employing standard RNGs
mentioned in Section B.1, is typically done in the following manner.

Let us have a discrete random variable x with a finite set of values x1, . . . , xn. The value
xi is then produced with probability pi for any i ∈ 1, . . . , n and

∑n
i=1 pi = 1.0. Let us now

have an RNG which generates us random numbers in the interval [A, B] with 0 ≤ A < B.
Then, to generate values of x we should perform the following steps:

1. Split the real interval [0, 1] into n fixed non-overlapping intervals I1, . . . , In such that
the width of Ii equals to pi for any i ∈ 1, . . . , n.

2. Generate a uniformly-distributed random number C and scale it down using the for-
mula C/ (B − A). This way we obtain the value in the interval [0, 1].

3. Find j ∈ 1, . . . , n such that C/ (B − A) ∈ Ij . This j exists because {Ii}ni=1 forms a
coverage of [0, 1].

4. Return xj as the value of the random variable x.

Clearly, step 1. has to be performed only once and states 2. to 3. result in values of x that
agree to its distribution.

52

Test Distributions

For our experiments we have chosen six different probability distributions. Each of these
distributions had 100 values, most of which with non-zero probabilities.

1. The standard uniform distribution (“Unif”).

2. A non-uniform distribution (“Diff”), where one value appears with a very high proba-
bility (0.899924), and all other values have very small or zero probabilities.

3. The “Lorentz” distribution1 with the largest and smallest probabilities being equal to
0.013151 and 0.00685 respectively.

4. Three distributions: “Pow2”, “Pow3” and “Pow4”. For each X ∈ {2, 3, 4}, “PowX”
was generated as follows:

a) Generate 100 random values using a uniform distribution on the interval [0, 1].

b) Take these values to the power X .

c) Normalize the resulting values in such a way that they sum up to one.

d) Take the new values as probabilities for the distribution on 1, . . . , 100.

Test Settings

For a given RNG R and a distribution D every distribution estimate was computed based
on 1.000.000 sampled values. Also, for every given D and R, we computed 50 distribution
estimates.

The run time for R on D was calculated as a mean time needed for generating 50 distribu-
tion estimates. The quality of eachR onD was estimated based on the following quantitative
value:

100∑
i=1

1

50

50∑
j=1

∣∣pji − pi∣∣
pi

, (B.1)

where {pi}100i=1 is the set of probability values of the original distribution and
{{
pji
}100
i=1

}50

j=1

are the probabilities of the 50 sampled distributions.

B.2.2. Exponentially Distributed Random Variables
The exponential distribution is a probability distribution over the set of positive real num-
bers. In order to generate values of an exponentially-distributed random variable, we use the
commonly known inversion method: if u is a uniformly-distributed random variable then

x := −1

λ
ln(1− u)

has exponential distribution with the rate λ. As an optimization, we use formula:

x := −1

λ
ln(u),

1a well-known probability distribution in physics

53

since 1− u is a uniformly-distributed random variable itself.

Test Distributions

We considered exponential distributions with λ ∈ {0.01, 0.1, 0.5, 1.0, 5.0, 10.0}.

Test Settings

For every given λ (distributionEλ) and every RNGRwe sampled 10.000.000 random values.
The run time for R on Eλ was calculated as a total time needed for generating all of

these values. Since exponential distribution is continuous, the quality of each R on Eλ was
estimated using discretization:

1. Compute M – the maximum over all simulated values.

2. For δ = 0.3, computeN = M/δ+1 – the number of δ intervals that form a partitioning
of the simulated values: {Ii}Ni=1 where Ii = [(i− 1) ∗ δ, i ∗ δ)2

3. Define Pi = Prob (X ∈ Ii) for i ∈ 1, . . . , N and X being a random variable with the
distribution Eλ.

4. Define P ′i = Si/107 for i ∈ 1, . . . , N and Si being the number of simulated values that
fall into the interval Ii.

This process gives us a discrete distribution: for any i ∈ 1, . . . , N we have Ii with probability
Pi; and an estimate of this distribution: defined by the values of {P ′i}

N
i=1. The quality of R

on D was then estimated based on the quality of the discritized exponential distribution and
its discritized estimate. This was done by computing the following quantitative value:

N∑
i=1

|Pi − P ′i |
δ

. (B.2)

Note that, this formula is different from the one given by Equation B.1. Here we divide
|Pi − P ′i | by δ because we are interested in the quality with which we approximate the density
function of the original (continuous) distribution.

B.3. RNG comparison - results
All experiments were done on a standard PC with an AMD R© Athlon R© CPU 3000+ processor
(64-bit) and and 2 GB of RAM. The used operating system was openSuSE 10.2.

B.3.1. Non-Uniformly Random Numbers
A brief summary of the obtained results can be found in Table B.1.

2 In our experiments, we had probabilities over intervals: [0.0, 0.3) , . . . , [2.7, 3.0) for λ ∈
{0.01, 0.1, 0.5, 1.0, 5.0}; and [0.0, 0.3) , . . . , [1.2, 1.5) for λ = 10.0.

54

Position Speed Simulation Quality
1. LFG Ranlux

Tausworthe
CLCG

2. Twister LFG
LCG Tausworthe
ILCG CLCG

Twister
ILCG

3. Ranlux LCG

Table B.1.: Non-uniform discrete random variables

Run time

The time needed for generating 1.000.000 random values for the considered RNGs on cor-
responding distributions is provided in Figure B.1. The quality of every RNG on every
distribution is summarized in Table B.2.

Figure B.1.: Run time: Non-uniform discrete random variables

Having a closer look at Figure B.1 and Table B.2, the results can be formulated as follows.
From the run-time point of view, the RNG with worst performance is clearly the Ranlux
Generator, which positioned itself behind all other RNGs in every of the six test cases. The
first three places are fought out between Tausworthe, LFG and CLCG in three out of six test
cases, whereat they still gained leading positions in the remaining three cases. By looking at
the plots in detail, one may notice that LFG and Tausworthe have similar results in every test

55

Pos.
Distribution

Diff Pow2 Pow3 Pow4 Unif Lorenz
1 Tausworthe LFG LFG CLCG LFG CLCG
2 LFG Tausworthe Tausworthe Twister Tausworthe LCG
3 CLCG CLCG ILCG LFG CLFG Tausworthe
4 LCG Twister LCG LCG ILCG LFG
5 Twister LCG Twister Tausworthe LCG Twister
6 ILCG ILCG ILFG ILCG Twister ILCG
7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.2.: Run time: Non-uniform discrete random variables

case, whereas CLCG is remarkably faster in “Lorentz” and “Pow4”, remarkably slower in
“Diff” and “Unif” distribution. Summarized, LFG and Tausworthe positioned themselves in
first place, closely followed by CLCG. The middle-ranked RNGs are then LCG, ILCG and
Twister with similar results, with ILCG tending to be the slowest out of this three RNGs,
except from the “Unif” test case, and with Twister and LCG swapping positions from case
to case.

Sums of average errors

The sum of average errors for the considered RNGs on corresponding distributions is pro-
vided in Figure B.2. The quality of every RNG on every distribution is summarized in
Table B.2.

Figure B.2.: Sums of average errors: Non-uniform discrete random variables

56

Pos.
Distribution

Diff Pow2 Pow3 Pow4 Unif Lorenz
1 ILCG Ranlux CLCG Ranlux ILCG ILCG
2 Twister Tausworthe Ranlux CLCG Ranlux LFG
3 LFG LFG ILCG LFG LFG Twister
4 CLCG Twister Twister Tausworthe Tausworthe Ranlux
5 LCG CLCG Tausworthe Twister Twister Tausworthe
6 Tausworthe ILCG LFG ILCG CLCG CLCG
7 Ranlux LCG LCG LCG LCG LCG

Table B.3.: Sums of average errors: Non-uniform discrete random variables

The results of Figure B.2 and Table B.3 can be formulated as follows. From the simulation-
quality point of view, the Ranlux Generator positioned itself in leading position. It gained
first/second places in four out of six test cases. Only for the “Diff” distribution Ranlux
Generator produces poor results compared to the remaining RNGs. Furthermore, as LCG
produced worst results in five out of six test cases, it clearly can be seen as the RNG with
the poorest simulation quality in our testing environment. Although the simulation quality
middle-ranked RNGs aren’t clearly distinguishable, one can detect some trends there. LFG
obtains position three with most stability, whereas ILCG shows the biggest difference in po-
sitioning through the whole test cases. Twister can mostly be found around places four to
five, CLCG and Tausworthe mostly show up on places four to six. Summarized, no clear
ordering can be found for the middle-ranked RNGs.

B.3.2. Exponentially Distributed Random Numbers
A brief summary of the obtained results can be found in Table B.4.

Position Speed Simulation Quality
1. CLCG Ranlux

2. LFG LFG
Twister Twister

Tausworthe CLCG
LCG Tausworthe
ILCG ILCG

LCG
3. Ranlux

Table B.4.: Exponentially distributed random variables

57

Run time

The time needed for generating 10.000.000 random values for the considered RNGs on cor-
responding distributions is provided in Figure B.3. The quality of every RNG on every
distribution is summarized in Table B.5.

Figure B.3.: Run time: Exponentially distributed random variables

Pos.
λ

0.01 0.1 0.5 1.0 5.0 10.0
1 CLCG Twister CLCG CLCG CLCG CLCG
2 LFG CLCG LFG LFG LFG Twister
3 ILCG Tausworthe Twister LCG LCG LCG
4 Twister LFG LCG Twister Twister ILCG
5 LCG ILCG ILCG Tausworthe Tausworthe Tausworthe
6 Tausworthe LCG Tausworthe ILCG ILCG LFG
7 Ranlux Ranlux Ranlux Ranlux Ranlux Ranlux

Table B.5.: Run time: Exponentially distributed random variables

Having a closer look at Figure B.3 and Table B.5, the results can be formulated as follows.
From runtime point of view CLCG can be seen as the winner over all considered RNGs.
In five out of six test cases it was placed first, for the sixth case CLCG was placed second.
When looking at pure runtime, Ranlux Generator again showed the worst performance of all
RNGs and all test cases examined. The middle-ranked RNGs can barely be ordered. ILCG
and Tausworthe Generator shows poor performance relatively to the remaining RNGs, in

58

most of the test cases, closely followed by CLG. Thus LFG and Twister position themselves
at positions two and three, with LFG producing slightly better results.

Sums of errors

The sum of errors for the considered RNGs on corresponding distributions is provided in
Figure B.4. The quality of every RNG on every distribution is summarized in Table B.6.

Figure B.4.: Sums of errors: Exponentially distributed random variables

Pos.
λ

0.01 0.1 0.5 1.0 5.0 10.0
1 Ranlux LFG ILCG ILCG Ranlux LFG
2 LCG LCG Ranlux LCG LFG Twister
3 ILCG Ranlux Tausworthe CLCG Twister ILCG
4 CLCG Tausworthe Twister Tausworthe LCG Ranlux
5 Twister CLCG CLCG LFG CLCG LCG
6 Tausworthe ILCG LCG Ranlux Tausworthe CLCG
7 LFG Twister LFG Twister ILCG Tausworthe

Table B.6.: Sums of errors: Exponentially distributed random variables

The results of Figure B.4 and Table B.6 are hard to summarize by giving an exact ordering
on the considered RNGs. Tausworthe Generator, as well as CLCG, show (at least for the
middle- to low-ranked positions) some kind of stability on places four to six for Tausworthe
Generator and places three to six for CLCG respectively. Concerning the leading positions,

59

Ranlux is the only RNG showing durable behavior on position one to three in four out of the
six test cases. The remaining RNGs – namely LFG, LCG, ILCG and Twister – permanently
change positions with being in first place for one test case, but already in last place for
another. As no clear tendency could be observed here, we obtain a large field of middle-
ranked RNGs for the simulation quality tests.

60

C. CTMC Steady State Simulation

This appendix describes two heuristics applied to the steady-state simulation algorithms im-
plemented in MRMC, see Section 8 and also Part II of [Zap08]:

1. Speeding up the regeneration method on larger models.

2. Optimising the frequency of computing confidence intervals on smaller models.

The positive effect of using both of these heuristics, in case of model checking steady-state
properties on CTMCs, has solid experimental evidences, see e. g. [KZ09].

C.1. Heuristic Regeneration Point
Our experiments revealed that, in case of large Markov chains, steady-state simulations can
take very long time. The main problem lies within the regeneration method [CL77] used
for data collection and analysis: On large ergodic models (≥ 1.000 states) regeneration
cycles typically need a lot of time to be complete. The problem can be relaxed by finding a
regeneration point that allows for shorten regeneration cycles.

In the present state of the art, finding an optimal regeneration point is an unsolved re-
search problem [CL77]. Thus, we have chosen several available heuristics and performed an
experimental evaluation of their performance using various case studies.

Heuristic Description
1. pure regeneration method the state with the lowest index in every BSCC
2. highest incoming rate the state with highest incoming rate
3. lowest rate difference the state with the lowest difference between in-

coming and outgoing rate
4. sample-based approach the most visited state after foregoing sampling
5. dynamic approach dynamic regeneration state, i.e. choose a new

regeneration state (randomly/sorted by rate etc.)
after every completed cycle

Table C.1.: Regeneration state choice heuristics

According to our results, see Figure C.1, the sample-based approach provides the best
results regarding the cycle length and the overall performance. On the figure, the plot corre-
sponding to this technique is named: static, sample-based.

MRMC implements the sample-based approach by selecting the regeneration point for
each BSCC Bi to be the most recurring state in a test simulation run of length 3 × |Bi|. At
present, MRMC has this heuristic enabled by default.

61

Figure C.1.: Runtime: dynamic and static regeneration points

C.2. Heuristic Sample-size Steps
On small ergodic models, ≤ 1.000 states, regeneration cycles are pretty small. This leads
to a very frequent re-computation of the confidence intervals that becomes a computational
bottleneck and leads to long model-checking times.

The effect can be discounted if in regeneration simulations we use a “dynamic” sample-
size increase. We (successfully) used the following formulae for the minimal sample size
used in simulations:

N s
min :=

√
T

B

and the sample-size step:

∆N s := T/

(
L

B ×N s

)
+N s

where N s – the current sample size during the regeneration simulation; N s
min – the minimal

sample size to consider; ∆N s – the delta to increase the sample size before recomputing
the confidence interval; L – #states visited during regeneration simulation; B - #(simulated
BSCCs), i. e. reachable non-trivial BSCCs with G states; T - #states in simulated BSCCs.

62

D. Partition refinement and sparse
matrices in MRMC 1.5

by David N. Jansen, Model-based system development, Radboud Universiteit, Nijmegen,
The Netherlands

Partition refinement is the principle behind the algorithm used in MRMC for lumping, both
formula-independent and formula-dependent.

In a partition refinement algorithm, one starts with a coarse partition of the state space.
Each block in the partition is one equivalence class in the bisimulation relation—at least, that
is the intention. In most cases, however, partition blocks are initially larger than equivalence
classes and need to be split according to some rules until a fixpoint is reached. In this fixpoint,
then, the blocks are exactly the equivalence classes.

The rule to decide which blocks need to be split for bisimilarity is: Maintain a set of
potential splitters. A splitter Sp is a block in the current partition1 that makes another block
C split because P(·, Sp) is not the same for each state inC. If such a blockC has been found,
one has to refine it into smaller subblocks C1, C2, . . . , Ck, such that P(·, Sp) is constant on
every single Ci.

If C was a potential splitter itself, the C1, . . . , Ck replace C as potential splitters. Other-
wise, the C1, . . . , Ck become potential splitters, except that one Ci is redundant; of course it
is advantageous to pick a maximal Ci as the redundant one.

We analysed the lumping algorithm presented in [DHS03] and came to the following
conclusions:

• The data structure to store a partition, the set of potential splitters and the set of pre-
decessor blocks (sets of sets of states) are often constructed from several linked lists.
However, as every state is in exactly one set of the partition and the set of splitters
and the set of predecessor blocks are subsets of the partition, one can replace the data
structure, as suggested in [Knu01, VL08], by an array containing all states in a peculiar
order.

1Actually, [DHS03] maintain a set of potential splitters that may also contain elements of earlier versions of
the partition: Contrary to what is written below, [DHS03] do not replace a block C in the set of potential
splitters by its subblocksC1, . . . , Ck if it is split by some other potential splitter. Instead, they always regard
one of the Ci as redundant. (Unfortunately, this is written down in a manner that is rather unclear: the fine
distinction, not visible from their article alone, is that the set L contains blocks, but the set L′′ contains
references to blocks.)

While [DHS03] can achieve the same time bound O(m log n) as the variant described in this text, it
seems less efficient to us, as some splitters are larger than required, which incurs more calculations. Addi-
tionally, some states may be a member of more than one splitter at the same time, which would disallow
our data structure.

63

• Using splay trees is not required for the optimal time bound of O(m log n) (where
m = number of transitions and n = number of states). What is required, is a sorting
algorithm that accounts for equal keys.

We therefore replaced splay sort by a variant of quicksort for equal keys [BM93].

• Finding the incoming probabilities of a state is inefficient in MRMC 1.4.1, because the
sparse matrix data structure does not provide that information readily. (It does only
provide the list of predecessors of a state; to find the incoming transition probability, a
[binary] search through the successors of every predecessor is required.)

We have improved the data structure so that the incoming probabilities can be found
more easily. This was possible without using extra memory. (However, as this im-
provement led to degraded performance in other parts of MRMC, we decided not to
release it.)

We are going to give more details about each of these points below.

D.1. Partition data structure
It is known that every state is in exactly one block of the partition. We therefore place the
state indices in an array P–>ib[·].id of size n such that states belonging to the same block
are adjacent. The linked list of partition blocks then contains the index in the array where a
block starts and ends (as usual in C, the end pointer actually points one past the subarray).
If one keeps the block list in the reverse order of their position in the array, it is enough to
maintain the end index: the start index can easily be found by looking at the end of the next
block in the list. (for the last block in the list, the start is obviously 0; this is the reason why
we use the reverse order.) A partition containing five blocks could be drawn as follows:

B5 states B4 states B3 states B2 states B1 states

0
↓

n
↓

↑
B5

↑
B4

↑
B3

↑
B2

↑
B1NIL⇐ ⇐= ⇐= ⇐= ⇐=
⇑

P–>blocks

In this diagram, double arrows indicate pointers (for the linked list) and single arrows
indicate array indices. P–>blocks is a field of the partition structure. In a separate array
P–>ib[·].b, we store for every state a pointer to its block.

The list of potential splitters is maintained as a sublist of the block list: every block
has a second pointer B–>u.next Sp; if the block is a splitter, B–>u.next Sp points to
the next potential splitter. (This list may be unordered.) In addition, each block has a flag
B–>flag to indicate whether it is really in the list; sometimes, we can see afterwards that a
certain block is actually not a potential splitter.2

2This may perhaps be improved upon, even without using a double-linked list; a potential splitter is only
deleted from the list if it is chosen as the current splitter, or if, after adding some new blocks to the partition,
one inserts all but the largest one into the list of splitters.

64

The list of predecessor blocks is, in principle, another sublist of the block list, requir-
ing another pointer B–>u.next PredCl. However, with a trick we can achieve that the list
of splitters and the list of predecessor blocks become disjoint, so we can use a C union for
the two sublist pointers. The trick is: If a predecessor block is found, it is split immediately
into two subblocks: a new subblock C pred containing the found predecessors of the splitter
and the remaining block C containing the other states in the block. (Note that it is easy to
insert a new block near the beginning of a given block: one just assigns C pred–>next =
C–>next, C–>next = C pred. As the block would have to be split anyway into these two
parts, this does not incur additional overhead.) The new subblock becomes element of the
list of predecessor blocks and the old block stays in the list of potential splitters (if it was
there).

In function find predecessors of file src/lumping/lump.c, states that are found to be
predecessors swap their position with other states to make every state go into the correct
subblock. In the situation depicted below, the state at t pos is swapped with the one at
C pred–>end, which is increased afterwards to reflect the new situation.

predecessors other states
↑

C pred–>next–>end
↑

C pred–>end

newly found
predecessor

↓

↑
t pos

↑
C–>end

predecessors other states
↑

C pred–>next–>end
↑

C pred–>end
↑

C–>end

�
���

���
���

���

H
HHH

HHH
HHH

HHj

The function find predecessors walks through the splitter from the last to the first state and
looks for predecessors per state. If the splitter splits itself, one has to take extra care that no
state in the splitter is forgotten or considered twice.

The splitter actually consists of four parts: predecessor states whose predecessors have or
have not been searched, and other states whose predecessors have or have not been searched.
In the extreme case, up to four elements must be moved:

searched
predecessors

uns.
pred.

unsearched
other states

searched
other states

↑
C pred–>next–>end

↑
begin

↑
C pred
–>end

↑
s pos

newly found
predecessor

↓

↑
t pos

↑
C–>end

searched
predecessors

uns.
pred.

unsearched
other states

searched
other states

↑
C pred–>next–>end

↑
begin

↑
C pred
–>end

↑
s pos

↑
t pos

↑
C–>end

���
���

���
������

B
B
B
B
B
B
BN

@
@
@
@
@
@
@R

J
J
J
J
J
J
Ĵ

The first case is easy: one always chooses the first list element, which is easy to delete from the list. In
the second case, careful bookkeeping should allow to find the predecessor of the largest block and adapt
its u.next Sp pointer instead of clearing the flag in the largest block. However, one still needs a O(1) test
whether a block is a splitter or not.

65

To make sure that this works, the splitter has to be searched from the end to the beginning,
i. e. from s pos to begin.

After having found the predecessors, every predecessor block has to be split such that
P(·, Sp) is constant for every subblock. The states remaining in the old subblock are not
predecessors and obviously have P(·, Sp) = 0, so only the new blocks in the list of prede-
cessor blocks need to be considered further.

D.2. Optimal sorting
To be able to refine a block C one actually has to sort its states according to P(·, Sp), so that
one can construct the Ci consisting of elements with the same value P(·, Sp).

D.2.1. Optimal time bound
A simple sort algorithm requires time in O(|C| log |C|). Later, it may happen that some of
the resulting subblocks Ci are split again by some other splitter, which requires another time
in O(|Ci| log |Ci|). In the end, using a simple sort algorithm requires time O(m log2 n).

To achieve a better time bound, one may use a sort algorithm that takes into account the
equal keys. An optimal multiset sort algorithm uses at most |C| log |C|−

∑k
i=1 |Ci| log |Ci|+

O(|C|) three-branch-comparisons [MS76]. Now, if we add the number of comparisons
needed to split (some of) the Ci, we get as the total worst-case required number of com-
parisons to split C and all its subblocks O(|C| log |C|). Therefore, in the end, splitting the
set of states requires at most O(n log n) comparisons. Together with the other operations in
partition refinement, we get an upper bound of O(m log n) if we use a sort algorithm that is
optimal for sets with equal keys.

D.2.2. Adapting quicksort for equal keys to splitting
In quicksort, a block to be sorted is split into two parts: one part containing “small” elements
and another part containing “large” ones. After that, the two parts are sorted recursively. The
split is achieved by picking a pivot element and regarding the elements < pivot as small and
those > pivot as large. The elements = pivot may become members of either part. During
the split operation, the block looks something like this:

≤ pivot unknown ≥ pivot
↑

begin
↑

end

However, if there are many elements equal to the pivot, it is advantageous to split the
block into three parts: the small elements, the large elements and those = pivot. The last
part does not need to be sorted further. Where should one place the third part during the split
operation? [BM93] say that the “Dutch national flag” scheme proposed by Dijkstra

< pivot = pivot unknown > pivot

leads to complex and slow code. They propose to use a scheme:

66

= piv < pivot unknown > pivot = piv

and to swap the = pivot elements to the middle at the end of the splitting step. We decided to
use an asymmetric variant of this scheme, because in our case, we do not require that the =
pivot elements end up in the middle; it is only required that they be together. So our scheme
becomes:

< pivot unknown > pivot = pivot
↑

B–>next–>end
↑

small
↑

large
↑

end
↑

B–>end

The function pass file noerror in the file src/lumping/sort.c generates this partition.
The above scheme also contains the variables used in this function to save the array indices
where the block is split (B–>next–>end and B–>end are fields of the block structure; the
others are local variables). At the end of pass file noerror, we have small = large and we
proceed by creating three subblocks in the partition (in the function sort and split block
internal, also in src/lumping/sort.c). The first two subblocks are then sorted recursively.

D.3. Sparse matrix data structure
The new data structure for sparse matrices is described in [KZH+09, KZH+10]. It is an
adapted version of the compressed-row data format for sparse matrices. In this format, there
is an array of row pointers that indicate where the data for each row starts; each row is or-
ganised as a vector of pairs (column, value), with the understanding that columns containing
0 are suppressed.

This data structure allows to find all successors of a state (i. e., all nonzero elements in a
row of the transition probability matrix) easily. To find the predecessors of a state (i. e., all
nonzero elements in a column), one has to check every row vector whether it contains the
desired column.

To make this task more efficient, we proposed to add a backpointer list to the data struc-
ture. This is, for each column, a vector of pointers to the appropriate pairs (column, value).3

Further details on this data structure can be found in the articles mentioned above.

Not released. Recent tests have shown that while this improved sparse matrix data struc-
ture speeds up bisimulation minimisation somewhat, it leads to serious degradation in sim-
ulation. Therefore, we decided not to release the sparse matrix data structure in the main
version of MRMC. If desired, it is available as a patch from the MRMC download page.

3This backpointer list has to be distinguished from the backlist of earlier versions of MRMC, which only con-
tained the row numbers. That would help in finding the predecessors, but not their transition probabilities;
the latter have still to be looked up by searching through one row vector.

67

	1 Introduction
	2 MRMC tool description
	3 Building MRMC
	3.1 Building MRMC from source code
	3.1.1 Getting & Installing GSL
	3.1.2 Linux
	3.1.3 Windows
	3.1.4 Mac OS X
	3.1.5 Getting & Using Splint

	3.2 Getting & Installing Test Suite
	3.2.1 Configuring tests

	4 MRMC's Input Files
	4.1 The .tra File Format
	4.2 The .lab File Format
	4.3 The .ctmdpi File Format
	4.4 The .rew File Format
	4.5 The .rewi File Format
	4.6 Getting MRMC models
	4.6.1 PRISM
	4.6.2 Performance Evaluation Process Algebra (PEPA)

	5 Running MRMC
	5.1 Command line options

	6 MRMC run-time Commands
	6.1 Basic Commands
	6.1.1 help
	6.1.2 help logic
	6.1.3 help simulation
	6.1.4 help rewards
	6.1.5 help common
	6.1.6 print

	6.2 Advanced Commands
	6.2.1 Common
	6.2.2 Numerical Methods
	6.2.3 Simulation
	6.2.4 Rewards

	7 Property Specification with Temporal Logics
	7.1 Common-logic subset
	7.1.1 State formulae
	7.1.2 Path formulae

	7.2 PCTL
	7.3 PRCTL
	7.4 CSL
	7.5 CSRL

	8 Model Checking by Discrete Event Simulations
	8.1 Confidence intervals and model checking
	8.1.1 Simple problem
	8.1.2 Using confidence intervals
	8.1.3 Solving the problems

	8.2 Simulation engine

	9 MRMC Test Suite
	10 Contact
	A CTMDPI: Model examples
	A.1 Markov decision processes
	A.1.1 Markov decision processes with internal non determinism

	B RNG Investigations
	B.1 Random Number Generators
	B.1.1 Linear Congruential Generator (LCG) – prism
	B.1.2 Improved LCG (ILCG) – ciardo
	B.1.3 Combined LCG (CLCG) – app_crypt
	B.1.4 Mersenne Twister (Twister) – ymer
	B.1.5 RNGs from GSL

	B.2 Experimental setup
	B.2.1 Non-Uniform Discrete Random Variables
	B.2.2 Exponentially Distributed Random Variables

	B.3 RNG comparison - results
	B.3.1 Non-Uniformly Random Numbers
	B.3.2 Exponentially Distributed Random Numbers

	C CTMC Steady State Simulation
	C.1 Heuristic Regeneration Point
	C.2 Heuristic Sample-size Steps

	D Partition refinement and sparse matrices in MRMC 1.5
	D.1 Partition data structure
	D.2 Optimal sorting
	D.2.1 Optimal time bound
	D.2.2 Adapting quicksort for equal keys to splitting

	D.3 Sparse matrix data structure

